231 lines
8.5 KiB
C++
231 lines
8.5 KiB
C++
/**
|
|
* \file
|
|
* \brief Implementation of the Driver for the DAC20
|
|
* Digital to Analog Converter Board
|
|
*
|
|
* This board was first used in the PFG, and gets now
|
|
* adopted by the Field-Cycling spectrometers.
|
|
*
|
|
* The board inverts all digital inputs.
|
|
* This driver partially honors this.
|
|
* Especially the data input is not yet inverted.
|
|
* -# Inverting the data line is equivalent to inverting
|
|
* the value and add/substracting one.
|
|
* -# There are different versions of the board around,
|
|
* where one board "undoes" the inversion by having an
|
|
* inverting op-amp after the DAC.
|
|
* -# The digital units have to be calibrated to physical
|
|
* units anyway. A sign doesn't hurt much.
|
|
*
|
|
* This is still a current discussion topic and might
|
|
* change.
|
|
*/
|
|
|
|
#include "DAC20.h"
|
|
#include <cstdio>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <list>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
using std::reverse;
|
|
using std::cout;
|
|
using std::vector;
|
|
#ifndef TIMING
|
|
#define TIMING 9e-8
|
|
#endif
|
|
|
|
// The bit depth of the DAC
|
|
#define DAC_BIT_DEPTH 20
|
|
|
|
// The channel configuration
|
|
#define DATA_BIT 18//18
|
|
#define CLK_BIT 16//16
|
|
|
|
DAC20::DAC20(int myid): id(myid) {
|
|
dac_value = 0;
|
|
set_latch_bit(17);
|
|
}
|
|
|
|
DAC20::~DAC20() {}
|
|
|
|
// This sets the dac_value
|
|
void DAC20::set_dac(signed dw) {
|
|
dac_value = dw;
|
|
}
|
|
|
|
void DAC20::set_latch_bit(int le_bit)
|
|
{
|
|
latch_bit = le_bit;
|
|
}
|
|
|
|
// This sets the DAC
|
|
void DAC20::set_dac(state& experiment) {
|
|
|
|
state_sequent* exp_sequence=dynamic_cast<state_sequent*>(&experiment);
|
|
if (exp_sequence == NULL)
|
|
// is a very state on top level, todo: change interface
|
|
throw pfg_exception( "cannot work on a single state, sorry (todo: change interface)");
|
|
else {
|
|
for(state_sequent::iterator child_state = exp_sequence->begin(); child_state != exp_sequence->end(); ++child_state)
|
|
set_dac_recursive(*exp_sequence, child_state);
|
|
// std::cout << "first state"<< std::endl;
|
|
// Set DAC to 0 at start of experiment
|
|
set_dac_to_zero(exp_sequence, exp_sequence->begin());
|
|
// And at the end of the experiment
|
|
set_dac_to_zero(exp_sequence, exp_sequence->end());
|
|
}
|
|
}
|
|
|
|
void DAC20::set_dac_to_zero(state_sequent* exp_sequence, state::iterator where)
|
|
{
|
|
state s(TIMING);
|
|
ttlout* le=new ttlout();
|
|
le->id=0;
|
|
s.push_front(le);
|
|
state_sequent* rep_sequence=new state_sequent();
|
|
rep_sequence->repeat=DAC_BIT_DEPTH;
|
|
le->ttls = 0 + ( 1 << CLK_BIT );
|
|
rep_sequence->push_back(s.copy_new());
|
|
le->ttls = 0 ;
|
|
rep_sequence->push_back(s.copy_new());
|
|
exp_sequence->insert(where, rep_sequence);
|
|
//read in the word (41st pulse)
|
|
le->ttls=0;
|
|
exp_sequence->insert(where, s.copy_new());
|
|
// 42nd pulse
|
|
// // the state should be 2ms long
|
|
// s.length = 2e-3-41*TIMING;
|
|
le->ttls= ( 1 << latch_bit );
|
|
exp_sequence->insert(where, s.copy_new());
|
|
}
|
|
|
|
// This loops recursive through the state tree
|
|
|
|
void DAC20::set_dac_recursive(state_sequent& the_sequence, state::iterator& the_state) {
|
|
|
|
state_sequent* a_sequence = dynamic_cast<state_sequent*>(*the_state);
|
|
// Am I a sequence? Yes? Go one sequence further
|
|
if (a_sequence != NULL) {
|
|
for(state_sequent::iterator child_state = a_sequence->begin(); child_state != a_sequence->end(); ++child_state)
|
|
set_dac_recursive(*a_sequence, child_state);
|
|
}
|
|
// I am not a sequence, but a state
|
|
else {
|
|
state* this_state = dynamic_cast<state*>(*the_state);
|
|
if (this_state == NULL)
|
|
throw pfg_exception( "state_atom in state_sequent not expected");
|
|
analogout* PFG_aout = NULL;
|
|
// find an analogout section with suitable id
|
|
state::iterator pos = this_state->begin();
|
|
while(pos!=this_state->end()) { // state members loop
|
|
analogout* aout = dynamic_cast<analogout*>(*pos); // initialize new analogout
|
|
// This is for me, analogout is != NULL (there is an analogout) and has my ID
|
|
if (aout!=NULL && aout->id == id) {
|
|
if (PFG_aout == NULL) {
|
|
// save the informations
|
|
PFG_aout = aout;
|
|
}
|
|
// there is no place for me here
|
|
else {
|
|
throw pfg_exception( "found another DAC section, ignoring");
|
|
delete aout;
|
|
}
|
|
// remove the analog out section
|
|
this_state->erase(pos++);
|
|
}
|
|
else {
|
|
++pos;
|
|
}
|
|
} // state members loop
|
|
|
|
if (PFG_aout != NULL) { // state modifications
|
|
//std::cout<<"found a analog out section, value="<<PFG_aout->dac_value<<std::endl;
|
|
// check the length of the state
|
|
if (this_state->length < TIMING*41.0)
|
|
throw pfg_exception( "time is too short to save DAC information");
|
|
else {
|
|
// copy of original state
|
|
state* register_state = new state(*this_state);
|
|
ttlout* register_ttls = new ttlout();
|
|
register_ttls->id = 0;
|
|
register_state->length = TIMING;
|
|
register_state->push_back(register_ttls);
|
|
if (PFG_aout->dac_value > (pow(2.0, int(DAC_BIT_DEPTH-1))-1) )
|
|
throw pfg_exception("dac_value too high");
|
|
if ( abs(PFG_aout->dac_value) > pow(2.0, int(DAC_BIT_DEPTH-1)) )
|
|
throw pfg_exception("dac_value too low");
|
|
// now, insert the ttl information
|
|
vector<int> dac_word;
|
|
for (int j = 0; j < DAC_BIT_DEPTH ; j++) {
|
|
int bit = PFG_aout->dac_value & 1;
|
|
// // invert the bit
|
|
// bit = (bit == 0);
|
|
dac_word.push_back(bit);
|
|
//cout << dac_word[j];
|
|
PFG_aout->dac_value >>= 1;
|
|
}
|
|
// need one clock cycle to read in bit
|
|
// latch enable (LE) should always be high while doing so
|
|
// except for the last bit
|
|
// reverse the bit pattern
|
|
reverse(dac_word.begin(), dac_word.end());
|
|
|
|
// do run length encoding, grouping same bit values in loops
|
|
int last_seen_bit=dac_word[0];
|
|
int last_seen_bit_count=1;
|
|
for (int i = 1; i < DAC_BIT_DEPTH+1; i++) {
|
|
if (i==DAC_BIT_DEPTH || last_seen_bit!=dac_word[i]) {
|
|
// so we have to write the bits
|
|
// either because the previous were different or we are finished
|
|
if (last_seen_bit_count>1) {
|
|
// insert a loop
|
|
state_sequent* rep_sequence=new state_sequent();
|
|
rep_sequence->repeat=last_seen_bit_count;
|
|
register_ttls->ttls = (1 << DATA_BIT)*last_seen_bit + (1 << CLK_BIT) + (1 << latch_bit);
|
|
rep_sequence->push_back(register_state->copy_new());
|
|
register_ttls->ttls = (1 << DATA_BIT)*last_seen_bit + (1 << latch_bit);
|
|
rep_sequence->push_back(register_state->copy_new());
|
|
the_sequence.insert(the_state, rep_sequence);
|
|
} else {
|
|
// no loop necessary, insert two states
|
|
register_ttls->ttls = (1 << DATA_BIT)*last_seen_bit + (1 << CLK_BIT) + (1 << latch_bit);
|
|
the_sequence.insert(the_state, register_state->copy_new());
|
|
register_ttls->ttls = (1 << DATA_BIT)*last_seen_bit + (1 << latch_bit);
|
|
the_sequence.insert(the_state, register_state->copy_new());
|
|
}
|
|
// reset counter and bits if we are not finished
|
|
if (i<DAC_BIT_DEPTH) {
|
|
last_seen_bit=dac_word[i];
|
|
last_seen_bit_count=1;
|
|
}
|
|
} // finished writing
|
|
else
|
|
last_seen_bit_count+=1; // same bit value, so continue
|
|
} // end of bit loop
|
|
register_ttls->ttls = 0;
|
|
the_sequence.insert(the_state,register_state->copy_new());
|
|
|
|
// shorten the remaining state
|
|
// and add LE high to this state
|
|
ttlout* ttls=new ttlout();
|
|
// 42nd pulse
|
|
this_state->length -= TIMING*41;
|
|
ttls->ttls = 1 << latch_bit;
|
|
this_state->push_front(ttls);
|
|
|
|
// cleanup
|
|
delete register_state;
|
|
delete PFG_aout;
|
|
} // state was long enough to work on
|
|
}
|
|
else {
|
|
ttlout* le_ttls=new ttlout();
|
|
le_ttls->ttls = 1 << latch_bit;
|
|
this_state->push_back(le_ttls);
|
|
}
|
|
// end of state modifications
|
|
} // I was a state
|
|
}
|