qdsfit/QDS.py

422 lines
15 KiB
Python
Executable File

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
import sys
import re
import signal
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import matplotlib
from mathlib import fit_anneal, fit_lbfgsb, fit_odr_cmplx, FunctionRegister
matplotlib.use('agg')
from matplotlib import pyplot
from matplotlib.colors import hex2color
#matplotlib.rc_file("default.mplrc")
import numpy as N
import QDSMain
from data import Data, Conductivity, Peak, PowerComplex, Static
import pyqtgraph as pg
#import yaff
from CustomWidgets import ParameterWidget
USE_CROSSH=False
class AppWindow(QMainWindow):
def __init__(self, parent=None):
super(AppWindow, self).__init__(parent)
self.ui = QDSMain.Ui_MainWindow()
self.ui.setupUi(self)
self.picked_artist = None
self.data = None
actions = {
self.ui.actionAdd_Peak:self.addPeak,
self.ui.actionAdd_Cond:self.addCond,
self.ui.actionAdd_PowerLaw:self.addPowerComplex,
self.ui.actionAdd_Eps_Infty:self.addEpsInfty
}
self.myActionGroup = QActionGroup(self)
for a in actions.keys(): self.myActionGroup.addAction(a)
self.function_registry = FunctionRegister()
self.Conductivity = None
self._lines = dict()
self.peakId = 0
self.peakBoxes = {}
self.parameterWidget = ParameterWidget()
self.ui.dockWidget_3.setWidget(self.parameterWidget)
## menubar
fileMenu = self.menuBar().addMenu("File")
openFile = QAction("&Open", self)
openFile.setShortcut(QKeySequence.Open)
openFile.triggered.connect(self.openFile)
fileMenu.addAction(openFile)
saveFile = QAction("&Save Fit Result", self)
saveFile.setShortcut(QKeySequence.Save)
saveFile.triggered.connect(self.saveFitResult)
fileMenu.addAction(saveFile)
# fitting methods
fitMenu = self.menuBar().addMenu("Standard Fits")
# lm
fit_lmAction = QAction("&Levenberg-Marquardt", self)
fit_lmAction.setShortcut(QKeySequence("Ctrl+F"))
fitMenu.addAction(fit_lmAction)
# lbfgsb
fit_lbfgsbAction = QAction("&L-BFGS-B", self)
fitMenu.addAction(fit_lbfgsbAction)
# Simulated Annealing
fit_annealAction = QAction("&Simulated Annealing", self)
fitMenu.addAction(fit_annealAction)
# YAFF
yaffMenu = self.menuBar().addMenu("YAFF")
start_yaff = QAction("&Startparam.", self)
yaffMenu.addAction(start_yaff)
fit_yaff = QAction("&Fit", self)
yaffMenu.addAction(fit_yaff)
self.signalMapper = QSignalMapper(self)
for i, fit_action in enumerate([fit_lmAction, fit_lbfgsbAction, fit_annealAction
]):
self.signalMapper.setMapping(fit_action, i)
fit_action.triggered.connect(self.signalMapper.map)
self.signalMapper.mapped.connect(self.fitData)
# save fitted values
#self.ui.actionSave_FitResult.triggered.connect(self.saveFitResult)# replaced by menu
self.data = Data()
self.fit_boundary = pg.LinearRegionItem(brush=QColor(0,127,254,15))
self.ui.graphicsView.addItem(self.data.data_curve_imag)
self.ui.graphicsView.addItem(self.data.data_curve_real)
self.ui.graphicsView.addItem(self.data.fitted_curve_imag)
self.ui.graphicsView.addItem(self.data.fitted_curve_real)
# cross hair
if USE_CROSSH:
#self.poslabel = pg.LabelItem(justify='right')
self.horizontalLine = pg.InfiniteLine(angle=0)
self.verticalLine = pg.InfiniteLine(angle=90)
#self.ui.graphicsView.plotItem.addItem(self.poslabel)
self.ui.graphicsView.addItem(self.horizontalLine)
self.ui.graphicsView.addItem(self.verticalLine)
self.ui.graphicsView.addItem(self.fit_boundary)
self.ui.graphicsView.setLogMode(x=True, y=True)
self.ui.graphicsView.showGrid(x=True, y=True)
self.ui.graphicsView.setLabel("bottom","Frequency",units="Hz")
self.ui.graphicsView.setLabel("left", "Dielectric loss", units="Debye")
self.ui.graphicsView.disableAutoRange()
#self.peak_box_layout = QGridLayout()
#self.ui.scrollAreaWidgetContents.setLayout(self.peak_box_layout)
##self.huh = pg.SignalProxy(, slot=self.mPE)
sc = self.ui.graphicsView.scene()
sc.sigMouseClicked.connect(self.mousePress)
sc.sigMouseMoved.connect(self.updateCrosshair)
def updateCrosshair(self,evt):
vb = self.ui.graphicsView.getPlotItem().vb
pos = vb.mapSceneToView(evt)
self.last_pos = pos
if USE_CROSSH:
self.horizontalLine.setBounds([self.data.frequency.min(), self.data.frequency.max()])
self.horizontalLine.setPos(pos.y())
self.verticalLine.setPos(pos.x())
#self.poslabel.setText("<span style='font-size: 12pt'>f=%0.1f Hz <span style='color: red'>e=%0.1f</span>"\
# % (pos.x(),pos.y()))
def mousePress(self, evt):
data_pos = self.last_pos
if self.ui.actionAdd_Peak.isChecked():
self.addPeak(data_pos)
self.ui.actionAdd_Peak.setChecked(False)
if self.ui.actionAdd_Cond.isChecked():
self.addCond(data_pos)
self.ui.actionAdd_Cond.setChecked(False)
if self.ui.actionAdd_PowerLaw.isChecked():
self.addPowerComplex(data_pos)
self.ui.actionAdd_PowerLaw.setChecked(False)
if self.ui.actionAdd_Eps_Infty.isChecked():
self.addEpsInfty(data_pos)
self.ui.actionAdd_Eps_Infty.setChecked(False)
def saveFitResult(self):
"""
Saving fit parameters to fitresults.log
including temperature
"""
self.saveFitFigure()
if not os.path.exists("fitresults.log"):
f = open("fitresults.log", "w")
else:
f = open("fitresults.log", "a")
# write header
f.write("#%7s"%('T'))
parfmt = "%8.2f" # T formatting
# if self.Conductivity != None: pass# always true
f.write("%9s%9s%9s " % ("e_s", "sig", "pow_sig"))
parfmt += "%9.3g%9.3g%9.2f " # conductivity formatting
for i, pb in enumerate(self.peakBoxes):
enum_peak = ("e_inf_%i" % i, "tau_%i" % i, "alpha_%i" % i, "beta_%i" % i)
f.write("%9s%9s%9s%9s " % enum_peak)
print enum_peak
parfmt += "%9.3g%9.3g%9.2f%9.2f" # peak formatting
f.write("fit_xlow fit_xhigh") # TODO: store limits
parfmt += "%9.3g%9.3g"
f.write('\n')
f.flush()
#f.write("%3.2f "%(self.data.meta["T"]))
pars = list(self.fitresult)
pars.insert(0, self.data.meta["T"])
pars.append(self.data.fit_limits[0])
pars.append(self.data.fit_limits[1])
N.savetxt(f, N.array([pars, ]), fmt=parfmt, delimiter=" ")
f.close()
def saveFitFigure(self):
fig = pyplot.figure(figsize=(3.54, 2.75))
font = {'family' : 'sans serif',
'weight' : 'normal',
'size' : 8}
matplotlib.rc('font', **font)
pyplot.loglog(self.data.frequency, self.data.epsilon.imag, 'bo', markersize=3, label="Data")
pyplot.loglog(self.data.frequency, self.data.epsilon_fit, 'r-', lw=1, label="Fit")
for i,peak in enumerate(self.peakBoxes):
f,eps = peak.get_data()
color = hex2color(str(peak.get_color().name()))
pyplot.loglog(f,eps, ls="--", color=color , lw=0.75, label="Peak %i"%i)
if self.Conductivity != None:
f,eps = self.Conductivity.get_data()
color = hex2color(str(self.Conductivity.get_color().name()))
pyplot.loglog(f,eps, ls="-.", color=color, lw=0.75, label="Cond.")
f,eps = self.Conductivity.get_epsilon_static()
pyplot.loglog(f,eps, ls=":", color=color, lw=0.75, label=r'$\epsilon_0$')
for i in (0,1): pyplot.axvline(x=self.data.fit_limits[i], color='g', ls="--")
pyplot.legend(title = "T=%.1f K"%(self.data.meta["T"]))
pyplot.grid()
pyplot.xlabel('f/Hz')
pyplot.ylabel('eps"')
pyplot.savefig(os.path.splitext(self.filepath)[0]+".png")
fig.clear()
def addCond(self, pos):
self.statusBar().showMessage("Click on graph")
_conductivity = Conductivity(pgPlotWidget=self.ui.graphicsView, limits=self.data.fit_limits)
_conductivity.changedData.connect(self.updatePlot)
_conductivity.removeObj.connect(self.delParamterObject)
cond_par = [10**(pos.y() + pos.x())*2*N.pi , 1.0]
_conductivity.setParameter(beta=cond_par)
self.parameterWidget.vlayout.insertWidget(1,_conductivity.widget)
self.function_registry.register_function(_conductivity)
self.parameterWidget.vlayout.update()
self.updatePlot()
def addEpsInfty(self, pos):
self.statusBar().showMessage("Click on graph")
_eps_infty = Static(pgPlotWidget=self.ui.graphicsView, limits=self.data.fit_limits)
_eps_infty.changedData.connect(self.updatePlot)
_eps_infty.removeObj.connect(self.delParamterObject)
cond_par = [10**pos.y()]
_eps_infty.setParameter(beta=cond_par)
self.parameterWidget.vlayout.insertWidget(1,_eps_infty.widget)
self.function_registry.register_function(_eps_infty)
self.parameterWidget.vlayout.update()
self.updatePlot()
def addPowerComplex(self, pos):
self.statusBar().showMessage("Click on graph")
_power_complex = PowerComplex(pgPlotWidget=self.ui.graphicsView, limits=self.data.fit_limits)
_power_complex.changedData.connect(self.updatePlot)
_power_complex.removeObj.connect(self.delParamterObject)
cond_par = [10**(pos.y() + pos.x())*2*N.pi , 1.0]
_power_complex.setParameter(beta=cond_par)
self.parameterWidget.vlayout.insertWidget(1,_power_complex.widget)
self.function_registry.register_function(_power_complex)
self.parameterWidget.vlayout.update()
self.updatePlot()
def delParamterObject(self, obj):
print "unregister",obj
#self.ui.graphicsView.removeItem(self.PowerComplex.data_curve_real)
self.function_registry.unregister_function(obj)
self.updatePlot()
def addPeak(self, pos):
self.statusBar().showMessage("Select Peak Position")
id_list = [ self.peakBoxes[key] for key in self.peakBoxes.keys()]
self.peakId = 1
while self.peakId in id_list:
self.peakId += 1
_peak = Peak(id=self.peakId, mpl=self.ui.graphicsView, limits=self.data.fit_limits)
_peak.changedData.connect(self.updatePlot)
_peak.removeObj.connect(self.delParamterObject)
new_peak = [2*10**pos.y(), 1 / (2*N.pi*10**pos.x()), 1, 1]
_peak.setParameter(beta = new_peak)
self.function_registry.register_function(_peak)
self.peakBoxes[_peak] = self.peakId
for i,pb in enumerate(self.peakBoxes.keys()):
self.parameterWidget.vlayout.insertWidget(1,pb.widget)
self.parameterWidget.vlayout.update()
self.updatePlot()
def delPeak(self):
for i, peak in enumerate(self.peakBoxes.keys()):
if peak.widget.isHidden():
self.ui.graphicsView.removeItem(peak.mpl_line)
self.parameterWidget.vlayout.removeWidget(peak.widget)
self.function_registry.unregister_function(peak)
self.peakBoxes.pop(peak)
self.parameterWidget.vlayout.update()
self.updatePlot()
def fitData(self, method):
log10fmin, log10fmax = self.fit_boundary.getRegion()
self.data.set_fit_xlimits(10**log10fmin, 10**log10fmax)
fit_methods = [fit_odr_cmplx, fit_lbfgsb, fit_anneal]
# print "Limits (xmin, xmax, ymin, ymax)", self.data.fit_limits
# build function list
p0,funcs,fixed_params = [],[],[]
for fcn in self.function_registry.get_registered_functions():
p0.extend(fcn.getParameter())
funcs.append(fcn.id_string)
fixed_params.extend(fcn.getFixed())
_freq, _fit = self.data.get_data()
odr_result = fit_methods[method](_freq, _fit, p0, fixed_params, funcs)
print "Set fit data"
self.data.set_fit(odr_result.beta, funcs)
self.ui.statusbar.showMessage(" ".join(odr_result.stopreason))
result = odr_result.beta
i=0
for fcn in self.function_registry.get_registered_functions():
num_p = len(fcn.getParameter())
beta = odr_result.beta[i:num_p+i]
sd_beta = odr_result.sd_beta[i:num_p+i]
fcn.setParameter(beta, sd_beta)
i += num_p
self.updatePlot()
def openFile(self):
#path = unicode(QFileDialog.getOpenFileName(self, "Open file"))
path = "MCM42PG0_199.96K.dat"
self.filepath=path
# TODO analyize file (LF,MF, HF) and act accordingly
data = N.loadtxt(path, skiprows=4)
self.setWindowTitle(os.path.basename(path))
numpat = re.compile('\d+\.\d+')
try:
Temp = None
for line in open(path).readlines():
if re.search("Fixed", line) or re.search("Temp", line):
print "Found line with Fixed or Temp"
Temp = float(re.search(numpat, line).group())
print "Temperature found in file:", Temp
break
if Temp == None: raise ValueError
except:
Temp = QInputDialog.getDouble(self, "No temperature found in data set", "Temperature/K:", value=0.00)[0]
# mask the data to values > 0 (loglog plot)
mask = (data[:, 1] > 0) & (data[:, 2] > 0) #& (data[:,2]>1e-3) & (data[:,0] > 1e-2)
_freq = data[mask, 0]
_die_stor = data[mask, 1]
_die_loss = data[mask, 2]
self.data.set_data(_freq, _die_stor, _die_loss)
self.data.meta["T"] = Temp
self.fit_boundary.setRegion([N.log10(_freq.min()), N.log10(_freq.max())])
self.ui.graphicsView.enableAutoRange()
self.updatePlot()
self.ui.graphicsView.disableAutoRange()
def updatePlot(self):
p0,funcs = [],[]
for fcn in self.function_registry.get_registered_functions():
p0.extend(fcn.getParameter())
funcs.append(fcn.id_string)
# calculate parameterized curve
self.data.set_fit(p0, funcs)
# replot data and fit, TODO: replot only if data changed
self.data.data_curve_real.setData(self.data.frequency, self.data.epsilon.real)
self.data.data_curve_imag.setData(self.data.frequency, self.data.epsilon.imag)
if len(funcs)> 0:
self.data.fitted_curve_real.setData(self.data.frequency, self.data.epsilon_fit.real)
self.data.fitted_curve_imag.setData(self.data.frequency, self.data.epsilon_fit.imag)
def sigint_handler(*args):
"""Handler for the SIGINT signal (CTRL + C).
"""
sys.stderr.write('\r')
if QMessageBox.question(None, '', "Are you sure you want to quit?",
QMessageBox.Yes | QMessageBox.No,
QMessageBox.Yes) == QMessageBox.Yes:
QApplication.quit()
if __name__ == '__main__':
signal.signal(signal.SIGINT, sigint_handler)
app = QApplication(sys.argv)
timer = QTimer()
timer.start(1000) # Check every second for Strg-c on Cmd line
timer.timeout.connect(lambda: None)
main = AppWindow()
main.showMaximized()
main.raise_()
sys.exit(app.exec_())