CryostatB-FieldMeasurementS.../AttocubePowerboxScript.py

935 lines
44 KiB
Python
Raw Normal View History

2024-10-28 10:43:01 +00:00
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 22 15:10:10 2023
Lightfield + Positioner
@author: Serdar, adjusted by Lukas
"""
############################################
# Packages from Ryan
import re
import math
import threading
import pyvisa
# from pyvisa import ResourceManager, constants
# B Field Limits (in T)
BX_MAX = 1.7
BY_MAX = 1.7
BZ_MAX = 4.0
############################################
import AMC
import csv
import time
import clr
import sys
import os
import spe2py as spe
import spe_loader as sl
import pandas as pd
import time
from System.IO import *
from System import String
import numpy as np
import matplotlib.pyplot as plt
import datetime
from typing import Union
#First choose your controller
IP_AMC300 = "192.168.1.1"
IP_AMC100 = "192.168.71.100"
# IP = "192.168.1.1"
IP = IP_AMC100
# Import os module
import os, glob, string
# Import System.IO for saving and opening files
from System.IO import *
from System.Threading import AutoResetEvent
# Import C compatible List and String
from System import String
from System.Collections.Generic import List
# Add needed dll references
sys.path.append(os.environ['LIGHTFIELD_ROOT'])
sys.path.append(os.environ['LIGHTFIELD_ROOT']+"\\AddInViews")
sys.path.append(r'C:\Program Files\Princeton Instruments\LightField\AddInViews') #I added them by hand -serdar
sys.path.append(r'C:\Program Files\Princeton Instruments\LightField') #this one also
clr.AddReference('PrincetonInstruments.LightFieldViewV5')
clr.AddReference('PrincetonInstruments.LightField.AutomationV5')
clr.AddReference('PrincetonInstruments.LightFieldAddInSupportServices')
os.environ['LIGHTFIELD_ROOT'] = r'C:\Program Files\Princeton Instruments\LightField'
# PI imports
from PrincetonInstruments.LightField.Automation import Automation
from PrincetonInstruments.LightField.AddIns import ExperimentSettings
from PrincetonInstruments.LightField.AddIns import CameraSettings
#from PrincetonInstruments.LightField.AddIns import DeviceType
from PrincetonInstruments.LightField.AddIns import SpectrometerSettings
from PrincetonInstruments.LightField.AddIns import RegionOfInterest
######################################################################################################### code begins from here #############################################
def set_custom_ROI():
# Get device full dimensions
dimensions = experiment.FullSensorRegion()
regions = []
# Add two ROI to regions
regions.append(
RegionOfInterest(
int(dimensions.X), int(dimensions.Y),
int(dimensions.Width), int(dimensions.Height//4), # Use // for integer division
int(dimensions.XBinning), int(dimensions.Height//4)))
# Set both ROI
experiment.SetCustomRegions(regions)
def experiment_completed(sender, event_args): #callback function which is hooked to event completed, this is the listener
print("... Acquisition Complete!")
acquireCompleted.Set() #set the event. This puts the autoresetevent false.(look at .NET library for furher info)
def InitializerFilenameParams():
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachIncrement, False)
experiment.SetValue(ExperimentSettings.FileNameGenerationIncrementNumber, 1.0)
experiment.SetValue(ExperimentSettings.FileNameGenerationIncrementMinimumDigits, 2.0)
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachDate, False)
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachTime, False)
def AcquireAndLock(name):
print("Acquiring...", end = "")
# name += 'Exp{0:06.2f}ms.CWL{1:07.2f}nm'.format(\
# experiment.GetValue(CameraSettings.ShutterTimingExposureTime)\
# ,experiment.GetValue(SpectrometerSettings.GratingCenterWavelength))
experiment.SetValue(ExperimentSettings.FileNameGenerationBaseFileName, name) #this creates .spe file with the name
experiment.Acquire() # this is an ashynrchronus func.
acquireCompleted.WaitOne()
def calculate_distance(x1, y1, x2, y2):
return np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def generate_scan_positions(center, range_val, resolution):
positive_range = np.arange(center, center + range_val + resolution, resolution)
return positive_range
def save_as_csv(filename, position_x, position_y):
file_existance = os.path.isfile(filename)
with open(filename, 'a', newline = '') as csvfile:
writer = csv.writer(csvfile)
if not file_existance:
writer.writerow(['x_coordinates','y_coordinates'])
writer.writerow([position_x, position_y])
def move_axis(axis, target):
"""
This function moves an axis to the specified target and stop moving after it is in the really closed
vicinity (+- 25nm) of the target (listener hooked to it).
"""
amc.move.setControlTargetPosition(axis, target)
amc.control.setControlMove(axis, True)
while not (target - 25) < amc.move.getPosition(axis) < (target + 25):
time.sleep(0.1)
time.sleep(0.15)
while not (target - 25) < amc.move.getPosition(axis) < (target + 25):
time.sleep(0.1)
amc.control.setControlMove(axis, False)
def move_xy(target_x, target_y): # moving in x and y direction closed to desired position
amc.move.setControlTargetPosition(0, target_x)
amc.control.setControlMove(0, True)
amc.move.setControlTargetPosition(1, target_y)
amc.control.setControlMove(1, True)
while not (target_x - 25) < amc.move.getPosition(0) < (target_x + 25) and (target_y - 25) < amc.move.getPosition(1) < (target_y + 25):
time.sleep(0.1)
time.sleep(0.15)
while not (target_x - 25) < amc.move.getPosition(0) < (target_x + 25) and (target_y - 25) < amc.move.getPosition(1) < (target_y + 25):
time.sleep(0.1)
amc.control.setControlOutput(0, False)
amc.control.setControlOutput(1, False)
# intensity_data = [] # To store data from each scan
# data_list = []
def move_scan_xy(range_x, range_y, resolution, Settings, baseFileName):
"""
This function moves the positioners to scan the sample with desired ranges and resolution in 2 dimensions.
At the end it saves a csv file
Parameters
----------
range_x : integer in nm. max value is 5um
Scan range in x direction.
range_y : integer in nm. max value is 5um
Scan range in y direction.
resolution : integer in nm.
Room temprature max res is 50nm. In cyrostat (4K) it is 10nm (check the Attocube manual)
baseFileName: string. At the end the saved file will be: baseFileName_scan_data.csv and it will be saved to the current directory
Returns
-------
None.
"""
start_time = time.time()
axis_x = 0 #first axis
axis_y = 1 #second axis
center_x = amc.move.getPosition(axis_x)
center_y = amc.move.getPosition(axis_y)
# #check if the intput range is reasonable
# if amc.move.getPosition(axis_x) + range_x >= 5000 or amc.move.getPosition(axis_x)- range_x <= 0 or amc.move.getPosition(axis_y) + range_y >=5000 or amc.move.getPosition(axis_y) - range_y <= 5000 :
# print("scan range is out of range!")
# return
# +- range from current positions for x and y directions
array_x = generate_scan_positions(center_x, range_x, resolution)
array_y = generate_scan_positions(center_y, range_y, resolution)
total_points = len(array_x)*len(array_y)
len_y = len(array_y)
intensity_data = [] # To store data from each scan
data_list = []
cwd = os.getcwd() # save original directory
#This gives a directory, in which the script will save the spectrum of each spot as spe
#However, it will open the spectrum, convert it to txt, add it to the intensity_data and delete the spe file
temp_folder_path = "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test"
#scanning loop
for i, x_positions in enumerate(array_x):
move_axis(axis_x, x_positions)
y = False
for j, y_positions in enumerate(array_y):
move_axis(axis_y, y_positions)
#each time when the positioner comes to the beggining of a new line
#this if will make the positioner wait a bit longer to really go to the target.
if y == False:
move_axis(axis_y, y_positions)
y = True
#we acquire with the LF
acquire_name_spe = f'{baseFileName}_X{x_positions}_Y{y_positions}'
AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name.
#read the .spe file and get the data as loaded_files
cwd = os.getcwd() # save original directory
os.chdir(temp_folder_path) #change directory
loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable
os.chdir(cwd) # go back to original directory
# Delete the created .spe file from acquiring after getting necessary info
spe_file_path = os.path.join(temp_folder_path, acquire_name_spe + '.spe')
os.remove(spe_file_path)
distance = calculate_distance(x_positions, y_positions,amc.move.getPosition(axis_x), amc.move.getPosition(axis_y))
points_left = total_points - (i * len_y + (j+1)) + 1
print('Points left in the scan: ', points_left)
#append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins)
intensity_data.append(loaded_files.data[0][0][0])
data_list.append({
'position_x': x_positions,
'position_y': y_positions,
'actual_x': amc.move.getPosition(axis_x),
'actual_y': amc.move.getPosition(axis_y),
'distance': distance,
})
#moves back to starting position
move_axis(axis_x, center_x)
move_axis(axis_y, center_y)
#prints total time the mapping lasted
end_time = time.time()
elapsed_time = (end_time - start_time) / 60
print('Scan time: ', elapsed_time, 'minutes')
# df = pd.DataFrame(data_list)
#save intensity & WL data as .txt
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas')
# creates new folder for MAP data
new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}"
os.mkdir(new_folder_name)
# Here the things will be saved in a new folder under user Lukas !
# IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!!
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas/'+ new_folder_name)
intensity_data = np.array(intensity_data)
np.savetxt(Settings + str(center_x) + '_' + str(center_y) + experiment_name +'.txt', intensity_data)
wl = np.array(loaded_files.wavelength)
np.savetxt("Wavelength.txt", wl)
################################################################# RYAN'S FUNCTIONS HERE ##########################################################################################
def sep_num_from_units(powerbox_output :str)->list:
'''
Receives a string as input and separates the numberic value and unit and returns it as a list.
Parameters
----------
powerbox_output : str
string output from the attocube powerbox, e.g. 1.35325kG
Returns
-------
list
list of float value and string (b value and it's units). If string is purely alphabets, then return a single element list
'''
match = re.match(r'\s*([+-]?\d*\.?\d+)([A-Za-z]+)', powerbox_output)
if match:
numeric_part = float(match.group(1)) # Convert the numeric part to a float
alphabetic_part = match.group(2) # Get the alphabetic part
return [numeric_part, alphabetic_part]
else:
return [powerbox_output,]
def query_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str:
"""helper function for the Attocube APS100 that queries a function to the device, removing the echo.
Args:
instr (pyvisa.resources.Resource):
command (str): commands, can be stringed in series with ; between commands
sleeptime (float, optional): delay time between commands. Defaults to 0.01.
Returns:
str: _description_
""" ''''''
try:
print(f"Sending command: {command}")
instr.write(command)
time.sleep(sleeptime)
echo_response = instr.read() # Read and discard the echo
# print(f"Echo response: {echo_response}")
actual_response = instr.read() # Read the actual response
print(f"Actual response: {actual_response}")
return actual_response
except pyvisa.VisaIOError as e:
print(f"Error communicating with instrument: {e}")
return None
def write_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str:
"""helper function for the Attocube APS100 that writes a function to the device, removing the echo.
Args:
instr (pyvisa.resources.Resource):
command (str): commands, can be stringed in series with ; between commands
sleeptime (float, optional): delay time between commands. Defaults to 0.01.
Returns:
str: _description_
""" ''''''
try:
print(f"Sending command: {command}")
instr.write(command)
time.sleep(sleeptime) # Give the device some time to process
try:
while True:
echo_response = instr.read() # Read and discard the echo
# print(f"Echo response: {echo_response}")
except pyvisa.VisaIOError as e:
# Expected timeout after all echoed responses are read
if e.error_code != pyvisa.constants.VI_ERROR_TMO:
raise
except pyvisa.VisaIOError as e:
print(f"Error communicating with instrument: {e}")
# receive values in units of T, rescale in kg to talk with the power supplyy. 1T = 10kG
# NOTE: removed singlepowersupply_bool, reading serial-nr. of the device instead.
# old save folder: "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test"
def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float,
res:float, magnet_coil:str, Settings:str, base_file_name='',
reversescan_bool=False, zerowhenfin_bool=False, loopscan_bool=False)->None:
# TODO: update docs in the end
""" this function performs a sweep of the B field of the chosen magnet coil. It creates a list o B values from the given min and max values,
with the given resolution. For each value, a measurement of the spectrum of the probe in the cryostat is made, using the LightField spectrometer.
Args:
instr (pyvisa.resources.Resource): chosen power supply device to connect to
min_bval (float): min B value of the scan (please input in units of Tesla)
max_bval (float): max B value of the scan (please input in units of Tesla)
res (float): resolution of the list of B values (please input in units of Tesla)
magnet_coil (str): select magnet coil to be used. String should be 'x-axis','y-axis' or 'z-axis'.
Settings (str): experiment settings, included in file name.
base_file_name (str, optional): base file name. Defaults to ''.
singlepowersupply_bool (bool, optional): _description_. Defaults to False.
reversescan_bool (bool, optional): _description_. Defaults to False.
zerowhenfin_bool (bool, optional): _description_. Defaults to False.
Raises:
ValueError: when By limit is exceeded.
ValueError: when Bz limit is exceeded.
ValueError: when Bx limit is exceeded.
ConnectionError: when no device is connected.
""" ''''''
def pyramid_list(lst) -> Union[list, np.ndarray]:
"""reverses the list and removes the first element of reversed list. Then, this is appended to
the end of the original list and returned as the 'pyramid' list.
Args:
lst (list or np.ndarray):
Raises:
TypeError: if the input object isn't a list or np.ndarray
Returns:
Union[list, np.ndarray]: the pyramid list
""" ''''''
if isinstance(lst, list):
return lst + lst[-2::-1]
elif isinstance(lst, np.ndarray):
return np.append(lst, lst[-2::-1])
else:
raise TypeError('Please input a list!')
# defines the folder, in which the data from the spectrometer is temporarily stored in
temp_folder_path = "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test"
# if path_save =='':
# path_save = datetime.datetime.now().strftime("%Y_%m_%d_%H%M_hrs_")
if base_file_name =='':
base_file_name = datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')
start_time = time.time() # start of the scan function
instr_info = query_no_echo(instr, '*IDN?')
instr_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element list of lists containing the set unit, llim and ulim
if instr_bsettings[0][0] == 'T':
instr_bsettings[1][0] = instr_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T
instr_bsettings[2][0] = instr_bsettings[2][0]*0.1
# if singlepowersupply_bool: # checks limits of Bx or By
# if (min_bval< -BY_MAX) or (max_bval > BY_MAX):
# raise ValueError('Input limits exceed that of the magnet By! Please input smaller limits.')
# elif '1' in query_no_echo(instr, 'CHAN?'): # check if its the coils for Bz
# if (min_bval < -BZ_MAX) or (max_bval > BZ_MAX):
# raise ValueError('Input limits exceed that of the magnet (Bz)! Please input smaller limits.')
# else: # checks limits of Bx
# if (min_bval< -BX_MAX) or (max_bval > BX_MAX):
# raise ValueError('Input limits exceed that of the magnet Bx! Please input smaller limits.')
if '2101014' in instr_info and (magnet_coil=='y-axis'): # single power supply
if (min_bval< -BY_MAX) or (max_bval > BY_MAX):
raise ValueError('Input limits exceed that of the magnet By! Please input smaller limits.')
elif '2301034' in instr_info: # dual power supply
if magnet_coil=='z-axis': # check if its the coils for Bz
if (min_bval < -BZ_MAX) or (max_bval > BZ_MAX):
raise ValueError('Input limits exceed that of the magnet (Bz)! Please input smaller limits.')
write_no_echo(instr, 'CHAN 1')
elif magnet_coil=='x-axis': # checks limits of Bx
if (min_bval< -BX_MAX) or (max_bval > BX_MAX):
raise ValueError('Input limits exceed that of the magnet Bx! Please input smaller limits.')
write_no_echo(instr, 'CHAN 2')
else:
raise ConnectionError('Device is not connected!')
write_no_echo(instr, f'LLIM {min_bval*10};ULIM {max_bval*10}') # sets the given limits, must convert to kG for the device to read
bval_lst = np.arange(min_bval, max_bval + res, res) # creates list of B values to measure at, with given resolution, in T
# TODO: unused, see if can remove
# init_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # queries the initial B value of the coil, rescale from kG to T
init_lim, subsequent_lim = 'LLIM', 'ULIM'
init_sweep, subsequent_sweep = 'DOWN', 'UP'
####################################################
# TODO: decide whether to start at min b val or max b val, depending on which one is nearer, IMPLEMENT THIS LATER
# nearest_bval = (abs(init_bval - min_bval), abs(init_bval - max_bval))
# if nearest_bval[0] <= nearest_bval[1]:
# reversescan_bool = True
####################################################
# if reverse scan, then flip the values in the b list, and swap the initial limit and sweep conditions
if reversescan_bool:
bval_lst = bval_lst[::-1]
init_lim, subsequent_lim = subsequent_lim, init_lim
init_sweep, subsequent_sweep = subsequent_sweep, init_sweep
# creates the pyramid list of B vals if one were to perform a hysteresis measurement
if loopscan_bool:
bval_lst = pyramid_list(bval_lst)
total_points = len(bval_lst)
middle_index_bval_lst = total_points // 2
intensity_data = [] # To store data from each scan
cwd = os.getcwd() # save original directory
# NOTE: helper function for the scanning loop
def helper_scan_func(idx, bval, instr=instr, init_lim=init_lim, init_sweep=init_sweep,
subsequent_lim=subsequent_lim, subsequent_sweep=subsequent_sweep, sleep=5):
if idx == 0: # for first iteration, sweep to one of the limits
write_no_echo(instr, f'{init_lim} {bval*10}') # convert back to kG
write_no_echo(instr, f'SWEEP {init_sweep}')
else:
write_no_echo(instr, f'{subsequent_lim} {bval*10}') # convert back to kG
write_no_echo(instr, f'SWEEP {subsequent_sweep}')
actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # convert kG to T
print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T')
while abs(actual_bval - bval) > 0.0001:
time.sleep(5) # little break
actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1
# update the actual bval
print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T')
#scanning loop
for i, bval in enumerate(bval_lst):
# if init_bval == bval:
# # if initial bval is equal to the element of the given iteration from the bval_lst, then commence measuring the spectrum
# pass
# else:
# NOTE: original code without the loop scan
################################################
# if i == 0: # for first iteration, sweep to one of the limits
# write_no_echo(instr, f'{init_lim} {bval*10}') # convert back to kG
# write_no_echo(instr, f'SWEEP {init_sweep}')
# else:
# write_no_echo(instr, f'{subsequent_lim} {bval*10}') # convert back to kG
# write_no_echo(instr, f'SWEEP {subsequent_sweep}')
# actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # convert kG to T
# print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T')
# while abs(actual_bval - bval) > 0.0001:
# time.sleep(5) # little break
# actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1
# # update the actual bval
# print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T')
###############################################
if not loopscan_bool:
helper_scan_func(i, bval)
else:
if i <= middle_index_bval_lst:
helper_scan_func(i, bval)
else:
helper_scan_func(i, bval, instr=instr, init_lim=subsequent_lim, init_sweep=subsequent_sweep,
subsequent_lim=init_lim, subsequent_sweep=init_sweep, sleep=5)
time.sleep(5)
# we acquire with the LF
acquire_name_spe = f'{base_file_name}_{bval}T'
AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name.
# read the .spe file and get the data as loaded_files
cwd = os.getcwd() # save original directory
os.chdir(temp_folder_path) #change directory
loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable
os.chdir(cwd) # go back to original directory
# Delete the created .spe file from acquiring after getting necessary info
spe_file_path = os.path.join(temp_folder_path, acquire_name_spe + '.spe')
os.remove(spe_file_path)
points_left = total_points - i - 1 # TODO: SEE IF THIS IS CORRECT
print('Points left in the scan: ', points_left)
#append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins)
intensity_data.append(loaded_files.data[0][0][0])
#prints total time the mapping lasted
end_time = time.time()
elapsed_time = (end_time - start_time) / 60
print('Scan time: ', elapsed_time, 'minutes')
write_no_echo(instr, f'LLIM {instr_bsettings[1][0]*10};ULIM {instr_bsettings[2][0]*10}') # reset the initial limits of the device after the scan
if zerowhenfin_bool:
write_no_echo(instr, 'SWEEP ZERO') # if switched on, discharges the magnet after performing the measurement loop above
#save intensity & WL data as .txt
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas')
# creates new folder for MAP data
new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}"
os.mkdir(new_folder_name)
# Here the things will be saved in a new folder under user Lukas !
# IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!!
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas/'+ new_folder_name)
intensity_data = np.array(intensity_data)
np.savetxt(Settings + str(min_bval) + 'T_to_' + str(max_bval) + 'T' + experiment_name +'.txt', intensity_data)
wl = np.array(loaded_files.wavelength)
np.savetxt("Wavelength.txt", wl)
def polar_to_cartesian(radius, start_angle, end_angle, step_size, clockwise=True):
# TODO: DOCS
"""Creates a list of discrete cartesian coordinates (x,y), given the radius, start- and end angles, the angle step size, and the direction of rotation.
Function then returns a list of two lists: list of angles and list of cartesian coordinates (x,y coordinates in a tuple).
Args:
radius (_type_): _description_
start_angle (_type_): _description_
end_angle (_type_): _description_
step_size (_type_): _description_
clockwise (bool, optional): _description_. Defaults to True.
Returns:
_type_: _description_
""" """"""
# Initialize lists to hold angles and (x, y) pairs
angles = []
coordinates = []
# Normalize angles to the range [0, 360)
start_angle = start_angle % 360
end_angle = end_angle % 360
if clockwise:
# Clockwise rotation
current_angle = start_angle
while True:
# Append the current angle to the angles list
angles.append(current_angle % 360)
# Convert the current angle to radians
current_angle_rad = math.radians(current_angle % 360)
# Convert polar to Cartesian coordinates
x = radius * math.cos(current_angle_rad)
y = radius * math.sin(current_angle_rad)
# Append the (x, y) pair to the list
coordinates.append((x, y))
# Check if we've reached the end_angle (handling wrap-around) (current_angle - step_size) % 360 == end_angle or
if current_angle % 360 == end_angle:
break
# Decrement the current angle by the step size
current_angle -= step_size
if current_angle < 0:
current_angle += 360
else:
# Counterclockwise rotation
current_angle = start_angle
while True:
# Append the current angle to the angles list
angles.append(current_angle % 360)
# Convert the current angle to radians
current_angle_rad = math.radians(current_angle % 360)
# Convert polar to Cartesian coordinates
x = radius * math.cos(current_angle_rad)
y = radius * math.sin(current_angle_rad)
# Append the (x, y) pair to the list
coordinates.append((x, y))
# Check if we've reached the end_angle (handling wrap-around) (current_angle + step_size) % 360 == end_angle or
if current_angle % 360 == end_angle:
break
# Increment the current angle by the step size
current_angle += step_size
if current_angle >= 360:
current_angle -= 360
return [angles, coordinates]
def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.Resource,
Babs:float, startangle:float, endangle:float, angle_stepsize:float, Settings:str, clockwise=True, base_file_name='', zerowhenfin_bool=False)->None:
# TODO: update docs
"""Rotation of the b-field in discrete steps, spectrum is measured at each discrete step in the rotation. Scan angle is
defined as the angle between the x-axis and the current B-field vector, i.e., in the anticlockwise direction.
Args:
instr1 (pyvisa.resources.Resource): _description_
instr2 (pyvisa.resources.Resource): _description_
Babs (float): absolute B-field value in T
startangle (float): start angle in degrees
endangle (float): end angle in degrees
angle_stepsize (float): angle step size in degrees
clockwise (bool): determines the direction of rotation of the B-field. Defaults to True.
zerowhenfin_bool (bool, optional): after finishing the rotation, both B-field components should be set to 0 T. Defaults to False.
"""
# TODO: possibly rename instr1 and instr2 to the dual and single power supplies respectively??
# defines the folder, in which the data from the spectrometer is temporarily stored in
temp_folder_path = "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test"
if base_file_name =='':
base_file_name = datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')
start_time = time.time() # start of the scan function
startangle = startangle % 360
endangle = endangle % 360 # ensures that the angles are within [0,360)
idnstr1 = query_no_echo(instr1, '*IDN?')
idnstr2 = query_no_echo(instr1, '*IDN?')
intensity_data = [] # To store data from each scan
cwd = os.getcwd() # save original directory
# find which one is the dual power supply, then, ramp B_x to Babs value
if '2301034' in idnstr1: # serial no. the dual power supply
pass
elif '2101034' in idnstr2:
# swap instruments, instr 1 to be the dual power supply (^= x-axis)
instr1, instr2 = instr2, instr1
# save initial low and high sweep limits of each device, and set them back after the rotation
instr1_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr1, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element tuple of tuples containing the set unit, llim and ulim
instr2_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr2, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element tuple of tuples containing the set unit, llim and ulim
if instr1_bsettings[0][0] == 'T':
instr1_bsettings[1][0] = instr1_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T
instr1_bsettings[2][0] = instr1_bsettings[2][0]*0.1
if instr2_bsettings[0][0] == 'T':
instr2_bsettings[1][0] = instr2_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T
instr2_bsettings[2][0] = instr2_bsettings[2][0]*0.1
# initialise the sweep angle list as well as the sweep limits and directions for each instrument
instr1_lim, instr2_lim = 'LLIM', 'ULIM'
instr1_sweep, instr2_sweep = 'DOWN', 'UP'
# create lists of angles and discrete Cartesian coordinates
angles, cartesian_coords = polar_to_cartesian(Babs, startangle, endangle, angle_stepsize, clockwise=clockwise)
if clockwise: # NOTE: old conditional was: startangle > endangle see if this works....
# reverse sweep limits and directions for the clockwise rotation
instr1_lim, instr2_lim = instr2_lim, instr1_lim
instr1_sweep, instr2_sweep = instr2_sweep, instr1_sweep
# list of rates (with units) for diff ranges of each device, only up to Range 1 for single power supply as that is already
# the max recommended current.
init_range_lst1 = list(sep_num_from_units(el) for el in query_no_echo(instr1, 'RATE? 0;RATE? 1;RATE? 2').split(';'))
init_range_lst2 = list(sep_num_from_units(el) for el in query_no_echo(instr2, 'RATE? 0;RATE? 1').split(';'))
min_range_lst = [min(el1[0], el2[0]) for el1,el2 in zip(init_range_lst1, init_range_lst2)] # min rates for each given range
# set both devices to the min rates
write_no_echo(instr1, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}')
write_no_echo(instr2, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}')
write_no_echo(instr1, f'CHAN 2;ULIM {Babs*10};SWEEP UP') # sets to B_x, the B_x upper limit and sweeps the magnet field to the upper limit
print(f'SWEEPING B-X TO {Babs} T NOW')
# wait for Babs to be reached by the Bx field
actual_bval = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1 # convert kG to T
print(f'Actual magnet strength (Bx): {actual_bval} T,', f'Target magnet strength: {Babs} T')
while abs(actual_bval - Babs) > 0.0001:
time.sleep(5) # little break
actual_bval = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1
print(f'Actual magnet strength (Bx): {actual_bval} T,', f'Target magnet strength: {Babs} T')
# NOTE: implement PID control, possibly best option to manage the b field DO THIS LATER ON, WE DO DISCRETE B VALUES RN
# Helper function that listens to a device
def listen_to_device(device_id, target_value, shared_values, lock, all_targets_met_event):
while not all_targets_met_event.is_set(): # Loop until the event is set
# value = 0 # Simulate receiving a float from the device INSERT QUERY NO ECHO HERE TO ASK FOR DEVICE IMAG
if '2301034' in device_id:
value = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1 # convert kG to T
elif '2101014' in device_id:
value = sep_num_from_units(query_no_echo(instr2, 'IMAG?'))[0]*0.1 # convert kG to T
print(f"Device {device_id} reports value: {value} T")
with lock:
shared_values[device_id] = value
# Check if both devices have met their targets
if all(shared_values.get(device) is not None and abs(shared_values[device] - target_value[device]) <= 0.0001
for device in shared_values):
print(f"Both devices reached their target values: {shared_values}")
all_targets_met_event.set() # Signal that both targets are met
# time.sleep(1) # Simulate periodic data checking
# Main function to manage threads and iterate over target values
def monitor_devices(device_target_values, angles_lst, intensity_data=intensity_data):
for iteration, target in enumerate(device_target_values):
print(f"\nStarting iteration {iteration+1} for target values: {target}")
# Shared dictionary to store values from devices
shared_values = {device: None for device in target.keys()}
# Event to signal when both target values are reached
all_targets_met_event = threading.Event()
# Lock to synchronize access to shared_values
lock = threading.Lock()
# Create and start threads for each device
threads = []
for device_id in target.keys():
thread = threading.Thread(target=listen_to_device, args=(device_id, target, shared_values, lock, all_targets_met_event))
threads.append(thread)
thread.start()
# Wait until both devices meet their target values
all_targets_met_event.wait()
print(f"Both target values for iteration {iteration+1} met. Performing action...")
# Perform some action after both targets are met
# we acquire with the LF
acquire_name_spe = f'{base_file_name}_{angles_lst[iteration]}°' # NOTE: save each intensity file with the given angle
AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name.
# read the .spe file and get the data as loaded_files
cwd = os.getcwd() # save original directory
os.chdir(temp_folder_path) #change directory
loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable
os.chdir(cwd) # go back to original directory
# Delete the created .spe file from acquiring after getting necessary info
spe_file_path = os.path.join(temp_folder_path, acquire_name_spe + '.spe')
os.remove(spe_file_path)
# points_left = total_points - i - 1 # TODO: SEE IF THIS IS CORRECT
# print('Points left in the scan: ', points_left)
#append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins)
intensity_data.append(loaded_files.data[0][0][0])
# Clean up threads
for thread in threads:
thread.join()
print(f"Threads for iteration {iteration+1} closed.\n")
#prints total time the mapping lasted
end_time = time.time()
elapsed_time = (end_time - start_time) / 60
print('Scan time: ', elapsed_time, 'minutes')
# reset both devices to original sweep limits
write_no_echo(instr1, f'LLIM {instr1_bsettings[1][0]*10};ULIM {instr1_bsettings[2][0]*10}') # reset the initial limits of the device after the scan
write_no_echo(instr2, f'LLIM {instr2_bsettings[1][0]*10};ULIM {instr2_bsettings[2][0]*10}') # reset the initial limits of the device after the scan
# reset both devices' initial rates for each range
write_no_echo(instr1, f'RANGE 0 {init_range_lst1[0][0]};RANGE 1 {init_range_lst1[1][0]};RANGE 2 {init_range_lst1[2][0]}') # reset the initial limits of the device after the scan
write_no_echo(instr2, f'RANGE 0 {init_range_lst2[0][0]};RANGE 1 {init_range_lst2[1][0]}') # reset the initial limits of the device after the scan
if zerowhenfin_bool:
write_no_echo(instr1, 'SWEEP ZERO') # if switched on, discharges the magnet after performing the measurement loop above
write_no_echo(instr2, 'SWEEP ZERO')
#save intensity & WL data as .txt
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas')
# creates new folder for MAP data
new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}"
os.mkdir(new_folder_name)
# Here the things will be saved in a new folder under user Lukas !
# IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!!
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas/'+ new_folder_name)
intensity_data = np.array(intensity_data)
np.savetxt(Settings + f'{angles[0]}°_to_{angles[-1]}°' + experiment_name +'.txt', intensity_data)
# TODO: remove/edit experiment_name in line above, as well in sweep_b_val func, rn takes a global variable below
wl = np.array(loaded_files.wavelength)
np.savetxt("Wavelength.txt", wl)
# modify cartesian_coords to suite the required data struct in monitor_devices
cartesian_coords = [{'2301034': t[0], '2101014': t[1]} for t in cartesian_coords]
# call the helper function to carry out the rotation/measurement of spectrum
monitor_devices(cartesian_coords, angles, intensity_data)
################################################################# END OF FUNCTION DEFS ###########################################################################################
# NOTE: RYAN INTRODUCED SOME FUNCTIONS HERE TO PERFORM THE SCAN
# Initialise PYVISA ResourceManager
rm = pyvisa.ResourceManager()
# print(rm.list_resources())
# 'ASRL8::INSTR' for dual power supply, 'ASRL9::INSTR' for single power supply (online PC)
# 'ASRL10::INSTR' for dual power supply, 'ASRL12::INSTR' for single power supply (offline PC)
# Open the connection with the APS100 dual power supply
powerbox_dualsupply = rm.open_resource('ASRL10::INSTR',
baud_rate=9600,
data_bits=8,
parity= pyvisa.constants.Parity.none,
stop_bits= pyvisa.constants.StopBits.one,
timeout=100)# 5000 ms timeout
# Open the connection with the APS100 dual power supply
powerbox_singlesupply = rm.open_resource('ASRL12::INSTR',
baud_rate=9600,
data_bits=8,
parity= pyvisa.constants.Parity.none,
stop_bits= pyvisa.constants.StopBits.one,
timeout=100)# 5000 ms timeout
write_no_echo(powerbox_dualsupply, 'REMOTE') # turn on the remote mode
write_no_echo(powerbox_singlesupply, 'REMOTE') # turn on the remote mode
# TODO: test functionality of the magnet_coil param later on, should work... as this code below is basically implemented inside the scan func.
# select axis for the dual supply, either z-axis(CHAN 1 ^= Supply A) or x-axis(CHAN 2 ^= Supply B)
# write_no_echo(powerbox_dualsupply, 'CHAN 1')
# Setup connection to AMC
amc = AMC.Device(IP)
amc.connect()
# Internally, axes are numbered 0 to 2
amc.control.setControlOutput(0, True)
amc.control.setControlOutput(1, True)
auto = Automation(True, List[String]())
experiment = auto.LightFieldApplication.Experiment
acquireCompleted = AutoResetEvent(False)
experiment.Load("Lukas_experiment_2024_02_06")
experiment.ExperimentCompleted += experiment_completed # we are hooking a listener.
# experiment.SetValue(SpectrometerSettings.GratingSelected, '[750nm,1200][0][0]')
# InitializerFilenameParams()
#set scan range and resolution in nanometers
range_x = 20000
range_y = 20000
resolution = 1000
# set B-field scan range and resolution (all in T)
set_llim_bval = -0.01
set_ulim_bval = 0.01
set_res_bval = 0.01
#Here you can specify the filename of the map e.g. put experiment type, exposure time, used filters, etc....
experiment_settings = 'PL_SP_700_LP_700_HeNe_52muW_exp_2s_Start_'
#The program adds the range of the scan as well as the resolution and the date and time of the measurement
experiment_name = f"{set_llim_bval}T_to_{set_ulim_bval}T_{set_res_bval}T_{datetime.datetime.now().strftime('%Y_%m_%d_%H%M')}"
# this moves the probe in xy-direction and measures spectrum there
# move_scan_xy(range_x, range_y, resolution, experiment_settings, experiment_name)
# perform the B-field measurement for selected axis above
# sweep_b_val(powerbox_dualsupply, set_llim_bval, set_ulim_bval, set_res_bval, experiment_settings, experiment_name)
sweep_b_val(powerbox_dualsupply, set_llim_bval, set_ulim_bval, set_res_bval, 'z-axis',
experiment_settings, experiment_name, zerowhenfin_bool=True, reversescan_bool=False)
# Internally, axes are numbered 0 to 2
write_no_echo(powerbox_dualsupply, 'LOCAL') # turn off the remote mode
write_no_echo(powerbox_singlesupply, 'LOCAL') # turn off the remote mode
# time.sleep(0.5)
powerbox_dualsupply.close()
powerbox_singlesupply.close()