571 lines
25 KiB
Python
571 lines
25 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Created on Fri Dec 22 15:10:10 2023
|
||
|
Lightfield + Positioner
|
||
|
@author: Serdar, adjusted by Lukas
|
||
|
"""
|
||
|
############################################
|
||
|
# Packages from Ryan
|
||
|
import re
|
||
|
import pyvisa
|
||
|
# from pyvisa import ResourceManager, constants
|
||
|
|
||
|
# B Field Limits (in T)
|
||
|
BX_MAX = 1.7
|
||
|
BY_MAX = 1.7
|
||
|
BZ_MAX = 4.0
|
||
|
############################################
|
||
|
|
||
|
import AMC
|
||
|
import csv
|
||
|
import time
|
||
|
import clr
|
||
|
import sys
|
||
|
import os
|
||
|
import spe2py as spe
|
||
|
import spe_loader as sl
|
||
|
import pandas as pd
|
||
|
import time
|
||
|
from System.IO import *
|
||
|
from System import String
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
import datetime
|
||
|
|
||
|
|
||
|
#First choose your controller
|
||
|
IP_AMC300 = "192.168.1.1"
|
||
|
IP_AMC100 = "192.168.71.100"
|
||
|
|
||
|
# IP = "192.168.1.1"
|
||
|
IP = IP_AMC100
|
||
|
|
||
|
|
||
|
# Import os module
|
||
|
import os, glob, string
|
||
|
|
||
|
# Import System.IO for saving and opening files
|
||
|
from System.IO import *
|
||
|
|
||
|
from System.Threading import AutoResetEvent
|
||
|
|
||
|
# Import C compatible List and String
|
||
|
from System import String
|
||
|
from System.Collections.Generic import List
|
||
|
|
||
|
# Add needed dll references
|
||
|
sys.path.append(os.environ['LIGHTFIELD_ROOT'])
|
||
|
sys.path.append(os.environ['LIGHTFIELD_ROOT']+"\\AddInViews")
|
||
|
sys.path.append(r'C:\Program Files\Princeton Instruments\LightField\AddInViews') #I added them by hand -serdar
|
||
|
sys.path.append(r'C:\Program Files\Princeton Instruments\LightField') #this one also
|
||
|
clr.AddReference('PrincetonInstruments.LightFieldViewV5')
|
||
|
clr.AddReference('PrincetonInstruments.LightField.AutomationV5')
|
||
|
clr.AddReference('PrincetonInstruments.LightFieldAddInSupportServices')
|
||
|
os.environ['LIGHTFIELD_ROOT'] = r'C:\Program Files\Princeton Instruments\LightField'
|
||
|
# PI imports
|
||
|
from PrincetonInstruments.LightField.Automation import Automation
|
||
|
from PrincetonInstruments.LightField.AddIns import ExperimentSettings
|
||
|
from PrincetonInstruments.LightField.AddIns import CameraSettings
|
||
|
#from PrincetonInstruments.LightField.AddIns import DeviceType
|
||
|
from PrincetonInstruments.LightField.AddIns import SpectrometerSettings
|
||
|
from PrincetonInstruments.LightField.AddIns import RegionOfInterest
|
||
|
|
||
|
######################################################################################################### code begins from here #############################################
|
||
|
|
||
|
def set_custom_ROI():
|
||
|
|
||
|
# Get device full dimensions
|
||
|
dimensions = experiment.FullSensorRegion()
|
||
|
|
||
|
regions = []
|
||
|
|
||
|
# Add two ROI to regions
|
||
|
regions.append(
|
||
|
RegionOfInterest(
|
||
|
int(dimensions.X), int(dimensions.Y),
|
||
|
int(dimensions.Width), int(dimensions.Height//4), # Use // for integer division
|
||
|
int(dimensions.XBinning), int(dimensions.Height//4)))
|
||
|
|
||
|
|
||
|
|
||
|
# Set both ROI
|
||
|
experiment.SetCustomRegions(regions)
|
||
|
|
||
|
def experiment_completed(sender, event_args): #callback function which is hooked to event completed, this is the listener
|
||
|
print("... Acquisition Complete!")
|
||
|
acquireCompleted.Set() #set the event. This puts the autoresetevent false.(look at .NET library for furher info)
|
||
|
|
||
|
def InitializerFilenameParams():
|
||
|
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachIncrement, False)
|
||
|
experiment.SetValue(ExperimentSettings.FileNameGenerationIncrementNumber, 1.0)
|
||
|
experiment.SetValue(ExperimentSettings.FileNameGenerationIncrementMinimumDigits, 2.0)
|
||
|
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachDate, False)
|
||
|
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachTime, False)
|
||
|
|
||
|
def AcquireAndLock(name):
|
||
|
print("Acquiring...", end = "")
|
||
|
# name += 'Exp{0:06.2f}ms.CWL{1:07.2f}nm'.format(\
|
||
|
# experiment.GetValue(CameraSettings.ShutterTimingExposureTime)\
|
||
|
# ,experiment.GetValue(SpectrometerSettings.GratingCenterWavelength))
|
||
|
|
||
|
experiment.SetValue(ExperimentSettings.FileNameGenerationBaseFileName, name) #this creates .spe file with the name
|
||
|
experiment.Acquire() # this is an ashynrchronus func.
|
||
|
acquireCompleted.WaitOne()
|
||
|
|
||
|
def calculate_distance(x1, y1, x2, y2):
|
||
|
return np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
||
|
|
||
|
def generate_scan_positions(center, range_val, resolution):
|
||
|
positive_range = np.arange(center, center + range_val + resolution, resolution)
|
||
|
return positive_range
|
||
|
|
||
|
def save_as_csv(filename, position_x, position_y):
|
||
|
file_existance = os.path.isfile(filename)
|
||
|
|
||
|
with open(filename, 'a', newline = '') as csvfile:
|
||
|
writer = csv.writer(csvfile)
|
||
|
|
||
|
if not file_existance:
|
||
|
writer.writerow(['x_coordinates','y_coordinates'])
|
||
|
|
||
|
writer.writerow([position_x, position_y])
|
||
|
|
||
|
def move_axis(axis, target):
|
||
|
"""
|
||
|
This function moves an axis to the specified target and stop moving after it is in the really closed
|
||
|
vicinity (+- 25nm) of the target (listener hooked to it).
|
||
|
"""
|
||
|
amc.move.setControlTargetPosition(axis, target)
|
||
|
amc.control.setControlMove(axis, True)
|
||
|
while not (target - 25) < amc.move.getPosition(axis) < (target + 25):
|
||
|
time.sleep(0.1)
|
||
|
time.sleep(0.15)
|
||
|
while not (target - 25) < amc.move.getPosition(axis) < (target + 25):
|
||
|
time.sleep(0.1)
|
||
|
amc.control.setControlMove(axis, False)
|
||
|
|
||
|
def move_xy(target_x, target_y): # moving in x and y direction closed to desired position
|
||
|
amc.move.setControlTargetPosition(0, target_x)
|
||
|
amc.control.setControlMove(0, True)
|
||
|
amc.move.setControlTargetPosition(1, target_y)
|
||
|
amc.control.setControlMove(1, True)
|
||
|
while not (target_x - 25) < amc.move.getPosition(0) < (target_x + 25) and (target_y - 25) < amc.move.getPosition(1) < (target_y + 25):
|
||
|
time.sleep(0.1)
|
||
|
time.sleep(0.15)
|
||
|
while not (target_x - 25) < amc.move.getPosition(0) < (target_x + 25) and (target_y - 25) < amc.move.getPosition(1) < (target_y + 25):
|
||
|
time.sleep(0.1)
|
||
|
|
||
|
amc.control.setControlOutput(0, False)
|
||
|
amc.control.setControlOutput(1, False)
|
||
|
|
||
|
|
||
|
# intensity_data = [] # To store data from each scan
|
||
|
# data_list = []
|
||
|
|
||
|
def move_scan_xy(range_x, range_y, resolution, Settings, baseFileName):
|
||
|
"""
|
||
|
This function moves the positioners to scan the sample with desired ranges and resolution in 2 dimensions.
|
||
|
At the end it saves a csv file
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
range_x : integer in nm. max value is 5um
|
||
|
Scan range in x direction.
|
||
|
range_y : integer in nm. max value is 5um
|
||
|
Scan range in y direction.
|
||
|
resolution : integer in nm.
|
||
|
Room temprature max res is 50nm. In cyrostat (4K) it is 10nm (check the Attocube manual)
|
||
|
baseFileName: string. At the end the saved file will be: baseFileName_scan_data.csv and it will be saved to the current directory
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
None.
|
||
|
|
||
|
"""
|
||
|
start_time = time.time()
|
||
|
axis_x = 0 #first axis
|
||
|
axis_y = 1 #second axis
|
||
|
center_x = amc.move.getPosition(axis_x)
|
||
|
center_y = amc.move.getPosition(axis_y)
|
||
|
# #check if the intput range is reasonable
|
||
|
# if amc.move.getPosition(axis_x) + range_x >= 5000 or amc.move.getPosition(axis_x)- range_x <= 0 or amc.move.getPosition(axis_y) + range_y >=5000 or amc.move.getPosition(axis_y) - range_y <= 5000 :
|
||
|
# print("scan range is out of range!")
|
||
|
# return
|
||
|
# +- range from current positions for x and y directions
|
||
|
|
||
|
|
||
|
array_x = generate_scan_positions(center_x, range_x, resolution)
|
||
|
array_y = generate_scan_positions(center_y, range_y, resolution)
|
||
|
total_points = len(array_x)*len(array_y)
|
||
|
len_y = len(array_y)
|
||
|
intensity_data = [] # To store data from each scan
|
||
|
data_list = []
|
||
|
cwd = os.getcwd() # save original directory
|
||
|
|
||
|
#This gives a directory, in which the script will save the spectrum of each spot as spe
|
||
|
#However, it will open the spectrum, convert it to txt, add it to the intensity_data and delete the spe file
|
||
|
Path_save = "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test"
|
||
|
|
||
|
#scanning loop
|
||
|
for i, x_positions in enumerate(array_x):
|
||
|
move_axis(axis_x, x_positions)
|
||
|
y = False
|
||
|
for j, y_positions in enumerate(array_y):
|
||
|
move_axis(axis_y, y_positions)
|
||
|
#each time when the positioner comes to the beggining of a new line
|
||
|
#this if will make the positioner wait a bit longer to really go to the target.
|
||
|
if y == False:
|
||
|
move_axis(axis_y, y_positions)
|
||
|
y = True
|
||
|
|
||
|
|
||
|
|
||
|
#we acquire with the LF
|
||
|
acquire_name_spe = f'{baseFileName}_X{x_positions}_Y{y_positions}'
|
||
|
AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name.
|
||
|
|
||
|
#read the .spe file and get the data as loaded_files
|
||
|
cwd = os.getcwd() # save original directory
|
||
|
os.chdir(Path_save) #change directory
|
||
|
loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable
|
||
|
os.chdir(cwd) # go back to original directory
|
||
|
|
||
|
# Delete the created .spe file from acquiring after getting necessary info
|
||
|
spe_file_path = os.path.join(Path_save, acquire_name_spe + '.spe')
|
||
|
os.remove(spe_file_path)
|
||
|
|
||
|
distance = calculate_distance(x_positions, y_positions,amc.move.getPosition(axis_x), amc.move.getPosition(axis_y))
|
||
|
|
||
|
points_left = total_points - (i * len_y + (j+1)) + 1
|
||
|
print('Points left in the scan: ', points_left)
|
||
|
|
||
|
#append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins)
|
||
|
intensity_data.append(loaded_files.data[0][0][0])
|
||
|
|
||
|
data_list.append({
|
||
|
'position_x': x_positions,
|
||
|
'position_y': y_positions,
|
||
|
'actual_x': amc.move.getPosition(axis_x),
|
||
|
'actual_y': amc.move.getPosition(axis_y),
|
||
|
'distance': distance,
|
||
|
})
|
||
|
|
||
|
#moves back to starting position
|
||
|
move_axis(axis_x, center_x)
|
||
|
move_axis(axis_y, center_y)
|
||
|
|
||
|
#prints total time the mapping lasted
|
||
|
end_time = time.time()
|
||
|
elapsed_time = (end_time - start_time) / 60
|
||
|
print('Scan time: ', elapsed_time, 'minutes')
|
||
|
|
||
|
# df = pd.DataFrame(data_list)
|
||
|
|
||
|
#save intensity & WL data as .txt
|
||
|
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas')
|
||
|
# creates new folder for MAP data
|
||
|
new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}"
|
||
|
os.mkdir(new_folder_name)
|
||
|
# Here the things will be saved in a new folder under user Lukas !
|
||
|
# IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!!
|
||
|
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas/'+ new_folder_name)
|
||
|
|
||
|
intensity_data = np.array(intensity_data)
|
||
|
np.savetxt(Settings + str(center_x) + '_' + str(center_y) + experiment_name +'.txt', intensity_data)
|
||
|
|
||
|
wl = np.array(loaded_files.wavelength)
|
||
|
np.savetxt("Wavelength.txt", wl)
|
||
|
|
||
|
################################################################# RYAN'S FUNCTIONS HERE ##########################################################################################
|
||
|
|
||
|
def sep_num_from_units(powerbox_output :str)->list:
|
||
|
'''
|
||
|
Receives a string as input and separates the numberic value and unit and returns it as a list.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
powerbox_output : str
|
||
|
string output from the attocube powerbox, e.g. 1.35325kG
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list
|
||
|
list of float value and string (b value and it's units). If string is purely alphabets, then return a single element list
|
||
|
|
||
|
'''
|
||
|
match = re.match(r'\s*([+-]?\d*\.?\d+)([A-Za-z]+)', powerbox_output)
|
||
|
if match:
|
||
|
numeric_part = float(match.group(1)) # Convert the numeric part to a float
|
||
|
alphabetic_part = match.group(2) # Get the alphabetic part
|
||
|
return [numeric_part, alphabetic_part]
|
||
|
else:
|
||
|
return [powerbox_output,]
|
||
|
|
||
|
def query_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0.01)->str:
|
||
|
"""helper function for the Attocube APS100 that queries a function to the device, removing the echo.
|
||
|
|
||
|
Args:
|
||
|
instr (pyvisa.resources.Resource):
|
||
|
command (str): commands, can be stringed in series with ; between commands
|
||
|
sleeptime (float, optional): delay time between commands. Defaults to 0.01.
|
||
|
|
||
|
Returns:
|
||
|
str: _description_
|
||
|
""" ''''''
|
||
|
try:
|
||
|
print(f"Sending command: {command}")
|
||
|
instr.write(command)
|
||
|
time.sleep(sleeptime)
|
||
|
echo_response = instr.read() # Read and discard the echo
|
||
|
# print(f"Echo response: {echo_response}")
|
||
|
actual_response = instr.read() # Read the actual response
|
||
|
print(f"Actual response: {actual_response}")
|
||
|
return actual_response
|
||
|
except pyvisa.VisaIOError as e:
|
||
|
print(f"Error communicating with instrument: {e}")
|
||
|
return None
|
||
|
|
||
|
def write_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0.01)->str:
|
||
|
"""helper function for the Attocube APS100 that writes a function to the device, removing the echo.
|
||
|
|
||
|
Args:
|
||
|
instr (pyvisa.resources.Resource):
|
||
|
command (str): commands, can be stringed in series with ; between commands
|
||
|
sleeptime (float, optional): delay time between commands. Defaults to 0.01.
|
||
|
|
||
|
Returns:
|
||
|
str: _description_
|
||
|
""" ''''''
|
||
|
try:
|
||
|
print(f"Sending command: {command}")
|
||
|
instr.write(command)
|
||
|
time.sleep(sleeptime) # Give the device some time to process
|
||
|
try:
|
||
|
while True:
|
||
|
echo_response = instr.read() # Read and discard the echo
|
||
|
# print(f"Echo response: {echo_response}")
|
||
|
except pyvisa.VisaIOError as e:
|
||
|
# Expected timeout after all echoed responses are read
|
||
|
if e.error_code != pyvisa.constants.VI_ERROR_TMO:
|
||
|
raise
|
||
|
except pyvisa.VisaIOError as e:
|
||
|
print(f"Error communicating with instrument: {e}")
|
||
|
|
||
|
# TODO: implement the reverse scan and zero when finish functionality
|
||
|
# receive values in units of T, rescale in kg to talk with the power supplyy. 1T = 10kG
|
||
|
def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float,
|
||
|
res:float, Settings:str, base_file_name='', path_save="C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test",
|
||
|
singlepowersupply_bool=False, reversescan_bool=False, zerowhenfin_bool=False)->None:
|
||
|
""" this function performs a sweep of the B field of the chosen magnet coil. It creates a list o B values from the given min and max values, with the given resolution. For each value, a measurement of the spectrum
|
||
|
of the probe in the cryostat is made, using the LightField spectrometer.
|
||
|
|
||
|
Args:
|
||
|
instr (pyvisa.resources.Resource): chosen power supply device to connect to
|
||
|
min_bval (float): min B value of the scan (please input in units of Tesla)
|
||
|
max_bval (float): max B value of the scan (please input in units of Tesla)
|
||
|
res (float): resolution of the list of B values (please input in units of Tesla)
|
||
|
Settings (str): experiment settings, included in file name.
|
||
|
base_file_name (str, optional): base file name. Defaults to ''.
|
||
|
path_save (str, optional): file path where the file will be saved. Defaults to "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test".
|
||
|
singlepowersupply_bool (bool, optional): _description_. Defaults to False.
|
||
|
reversescan_bool (bool, optional): _description_. Defaults to False.
|
||
|
zerowhenfin_bool (bool, optional): _description_. Defaults to False.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: when By limit is exceeded.
|
||
|
ValueError: when Bz limit is exceeded.
|
||
|
ValueError: when Bx limit is exceeded.
|
||
|
""" ''''''
|
||
|
if base_file_name =='':
|
||
|
base_file_name = datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')
|
||
|
|
||
|
start_time = time.time()
|
||
|
instr_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element tuple of tuples containing the set unit, llim and ulim
|
||
|
|
||
|
if instr_bsettings[0][0] == 'T':
|
||
|
instr_bsettings[1][0] = instr_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T
|
||
|
instr_bsettings[2][0] = instr_bsettings[2][0]*0.1
|
||
|
|
||
|
if singlepowersupply_bool: # checks limits of Bx or By
|
||
|
if (min_bval< -BY_MAX) or (max_bval > BY_MAX):
|
||
|
raise ValueError('Input limits exceed that of the magnet By! Please input smaller limits.')
|
||
|
elif '1' in query_no_echo(instr, 'CHAN?'): # check if its the coils for Bz
|
||
|
if (min_bval < -BZ_MAX) or (max_bval > BZ_MAX):
|
||
|
raise ValueError('Input limits exceed that of the magnet (Bz)! Please input smaller limits.')
|
||
|
else: # checks limits of Bx
|
||
|
if (min_bval< -BX_MAX) or (max_bval > BX_MAX):
|
||
|
raise ValueError('Input limits exceed that of the magnet Bx! Please input smaller limits.')
|
||
|
|
||
|
write_no_echo(instr, f'LLIM {min_bval*10};ULIM {max_bval*10}') # sets the given limits, must convert to kG for the device to read
|
||
|
bval_lst = np.arange(min_bval, max_bval + res, res) # creates list of B values to measure at, with given resolution, in T
|
||
|
|
||
|
init_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # queries the initial B value of the coil, rescale from kG to T
|
||
|
|
||
|
init_lim, subsequent_lim = 'LLIM', 'ULIM'
|
||
|
init_sweep, subsequent_sweep = 'DOWN', 'UP'
|
||
|
|
||
|
####################################################
|
||
|
# TODO: decide whether to start at min b val or max b val, depending on which one is nearer, IMPLEMENT THIS LATER
|
||
|
# nearest_bval = (abs(init_bval - min_bval), abs(init_bval - max_bval))
|
||
|
# if nearest_bval[0] <= nearest_bval[1]:
|
||
|
# reversescan_bool = True
|
||
|
####################################################
|
||
|
|
||
|
# if reverse scan, then flip the values in the b list, and swap the initial limit and sweep conditions
|
||
|
if reversescan_bool:
|
||
|
bval_lst = bval_lst[::-1]
|
||
|
init_lim, subsequent_lim = subsequent_lim, init_lim
|
||
|
init_sweep, subsequent_sweep = subsequent_sweep, init_sweep
|
||
|
|
||
|
total_points = len(bval_lst)
|
||
|
intensity_data = [] # To store data from each scan
|
||
|
cwd = os.getcwd() # save original directory
|
||
|
|
||
|
#This gives a directory, in which the script will save the spectrum of each spot as spe
|
||
|
#However, it will open the spectrum, convert it to txt, add it to the intensity_data and delete the spe file
|
||
|
#scanning loop
|
||
|
for i, bval in enumerate(bval_lst):
|
||
|
|
||
|
# if init_bval == bval:
|
||
|
# # if initial bval is equal to the element of the given iteration from the bval_lst, then commence measuring the spectrum
|
||
|
# pass
|
||
|
# else:
|
||
|
|
||
|
# TODO: improve the conditional block later on... try to shorten the number of conditionals needed/flatten the nested conditionals
|
||
|
# else, travel to the lower or higher limit, depending on how far the init val is to each bound, and commence the measurement from there on
|
||
|
# if not reversescan_bool:
|
||
|
if i == 0: # for first iteration, sweep to one of the limits
|
||
|
write_no_echo(instr, f'{init_lim} {bval*10}') # convert back to kG
|
||
|
write_no_echo(instr, f'SWEEP {init_sweep}')
|
||
|
else:
|
||
|
write_no_echo(instr, f'{subsequent_lim} {bval*10}') # convert back to kG
|
||
|
write_no_echo(instr, f'SWEEP {subsequent_sweep}')
|
||
|
|
||
|
actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # convert kG to T
|
||
|
print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T')
|
||
|
|
||
|
while abs(actual_bval - bval) > 0.0001:
|
||
|
time.sleep(5) # little break
|
||
|
actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1
|
||
|
# update the actual bval
|
||
|
print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T')
|
||
|
|
||
|
time.sleep(5)
|
||
|
# we acquire with the LF
|
||
|
acquire_name_spe = f'{base_file_name}_{bval}T'
|
||
|
AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name.
|
||
|
|
||
|
# read the .spe file and get the data as loaded_files
|
||
|
cwd = os.getcwd() # save original directory
|
||
|
os.chdir(path_save) #change directory
|
||
|
loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable
|
||
|
os.chdir(cwd) # go back to original directory
|
||
|
|
||
|
# Delete the created .spe file from acquiring after getting necessary info
|
||
|
spe_file_path = os.path.join(path_save, acquire_name_spe + '.spe')
|
||
|
os.remove(spe_file_path)
|
||
|
|
||
|
points_left = total_points - i - 1 # TODO: SEE IF THIS IS CORRECT
|
||
|
print('Points left in the scan: ', points_left)
|
||
|
|
||
|
#append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins)
|
||
|
intensity_data.append(loaded_files.data[0][0][0])
|
||
|
|
||
|
#prints total time the mapping lasted
|
||
|
end_time = time.time()
|
||
|
elapsed_time = (end_time - start_time) / 60
|
||
|
print('Scan time: ', elapsed_time, 'minutes')
|
||
|
|
||
|
if zerowhenfin_bool:
|
||
|
write_no_echo(instr, 'SWEEP ZERO') # if switched on, discharges the magnet after performing the measurement loop above
|
||
|
|
||
|
#save intensity & WL data as .txt
|
||
|
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas')
|
||
|
# creates new folder for MAP data
|
||
|
new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}"
|
||
|
os.mkdir(new_folder_name)
|
||
|
# Here the things will be saved in a new folder under user Lukas !
|
||
|
# IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!!
|
||
|
os.chdir('C:/Users/localadmin/Desktop/Users/Lukas/'+ new_folder_name)
|
||
|
|
||
|
intensity_data = np.array(intensity_data)
|
||
|
np.savetxt(Settings + str(min_bval) + 'T_to_' + str(max_bval) + 'T' + experiment_name +'.txt', intensity_data)
|
||
|
|
||
|
wl = np.array(loaded_files.wavelength)
|
||
|
np.savetxt("Wavelength.txt", wl)
|
||
|
|
||
|
|
||
|
|
||
|
################################################################# END OF FUNCTION DEFS ###########################################################################################
|
||
|
|
||
|
# NOTE: RYAN INTRODUCED SOME FUNCTIONS HERE TO PERFORM THE SCAN
|
||
|
|
||
|
# Initialise PYVISA ResourceManager
|
||
|
rm = pyvisa.ResourceManager()
|
||
|
# print(rm.list_resources()) # 'ASRL8::INSTR' for dual power supply, 'ASRL9::INSTR' for single power supply
|
||
|
|
||
|
# Open the connection with the APS100 dual power supply
|
||
|
powerbox_dualsupply = rm.open_resource('ASRL8::INSTR',
|
||
|
baud_rate=9600, # Example baud rate, adjust as needed
|
||
|
data_bits=8,
|
||
|
parity= pyvisa.constants.Parity.none,
|
||
|
stop_bits= pyvisa.constants.StopBits.one,
|
||
|
timeout=5000)# 5000 ms timeout
|
||
|
|
||
|
write_no_echo(powerbox_dualsupply, 'REMOTE') # turn on the remote mode
|
||
|
|
||
|
# select axis for the dual supply, either z-axis(CHAN 1 ^= Supply A) or x-axis(CHAN 2 ^= Supply B)
|
||
|
write_no_echo(powerbox_dualsupply, 'CHAN 1')
|
||
|
|
||
|
# Setup connection to AMC
|
||
|
amc = AMC.Device(IP)
|
||
|
amc.connect()
|
||
|
|
||
|
# Internally, axes are numbered 0 to 2
|
||
|
amc.control.setControlOutput(0, True)
|
||
|
amc.control.setControlOutput(1, True)
|
||
|
|
||
|
|
||
|
auto = Automation(True, List[String]())
|
||
|
experiment = auto.LightFieldApplication.Experiment
|
||
|
acquireCompleted = AutoResetEvent(False)
|
||
|
|
||
|
experiment.Load("Lukas_experiment_2024_02_06")
|
||
|
experiment.ExperimentCompleted += experiment_completed # we are hooking a listener.
|
||
|
# experiment.SetValue(SpectrometerSettings.GratingSelected, '[750nm,1200][0][0]')
|
||
|
# InitializerFilenameParams()
|
||
|
|
||
|
|
||
|
#set scan range and resolution in nanometers
|
||
|
range_x = 20000
|
||
|
range_y = 20000
|
||
|
resolution = 1000
|
||
|
# set B-field scan range and resolution (all in T)
|
||
|
set_llim_bval = -0.01
|
||
|
set_ulim_bval = 0.01
|
||
|
set_res_bval = 0.01
|
||
|
|
||
|
#Here you can specify the filename of the map e.g. put experiment type, exposure time, used filters, etc....
|
||
|
experiment_settings = 'PL_SP_700_LP_700_HeNe_52muW_exp_2s_Start_'
|
||
|
#The program adds the range of the scan as well as the resolution and the date and time of the measurement
|
||
|
experiment_name = f"{set_llim_bval}T_to_{set_ulim_bval}T_{set_res_bval}T_{datetime.datetime.now().strftime('%Y_%m_%d_%H%M')}"
|
||
|
|
||
|
# # TODO: write the bval scan here
|
||
|
# for idx, bval in enumerate(bval_lst):
|
||
|
# write_no_echo(powerbox_dualsupply, '')
|
||
|
|
||
|
# this moves the probe in xy-direction and measures spectrum there
|
||
|
# move_scan_xy(range_x, range_y, resolution, experiment_settings, experiment_name)
|
||
|
|
||
|
# perform the B-field measurement for selected axis above
|
||
|
# sweep_b_val(powerbox_dualsupply, set_llim_bval, set_ulim_bval, set_res_bval, experiment_settings, experiment_name)
|
||
|
sweep_b_val(powerbox_dualsupply, set_llim_bval, set_ulim_bval, set_res_bval,
|
||
|
experiment_settings, experiment_name, singlepowersupply_bool=False, zerowhenfin_bool=True, reversescan_bool=False)
|
||
|
|
||
|
# Internally, axes are numbered 0 to 2
|
||
|
|
||
|
write_no_echo(powerbox_dualsupply, 'LOCAL') # turn off the remote mode
|
||
|
# time.sleep(0.5)
|
||
|
powerbox_dualsupply.close()
|
||
|
|