addition of create_discrete_b_field_list, progress on b_field_rotation
This commit is contained in:
parent
4881f4de3d
commit
0c21e935ed
@ -7,6 +7,7 @@ Lightfield + Positioner
|
||||
############################################
|
||||
# Packages from Ryan
|
||||
import re
|
||||
import math
|
||||
from threading import Thread
|
||||
import pyvisa
|
||||
# from pyvisa import ResourceManager, constants
|
||||
@ -303,6 +304,7 @@ def sep_num_from_units(powerbox_output :str)->list:
|
||||
else:
|
||||
return [powerbox_output,]
|
||||
|
||||
|
||||
def query_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str:
|
||||
"""helper function for the Attocube APS100 that queries a function to the device, removing the echo.
|
||||
|
||||
@ -327,6 +329,7 @@ def query_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->st
|
||||
print(f"Error communicating with instrument: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def write_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str:
|
||||
"""helper function for the Attocube APS100 that writes a function to the device, removing the echo.
|
||||
|
||||
@ -353,11 +356,12 @@ def write_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->st
|
||||
except pyvisa.VisaIOError as e:
|
||||
print(f"Error communicating with instrument: {e}")
|
||||
|
||||
|
||||
# receive values in units of T, rescale in kg to talk with the power supplyy. 1T = 10kG
|
||||
# NOTE: removed singlepowersupply_bool, reading serial-nr. of the device instead.
|
||||
# old save folder: "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test"
|
||||
def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float,
|
||||
res:float, magnet_coil:str, Settings:str, base_file_name='', path_save=None,
|
||||
res:float, magnet_coil:str, Settings:str, base_file_name='', path_save='',
|
||||
reversescan_bool=False, zerowhenfin_bool=False, loopscan_bool=False)->None:
|
||||
# TODO: update docs in the end
|
||||
""" this function performs a sweep of the B field of the chosen magnet coil. It creates a list o B values from the given min and max values,
|
||||
@ -401,7 +405,7 @@ def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float,
|
||||
else:
|
||||
raise TypeError('Please input a list!')
|
||||
|
||||
if path_save is None:
|
||||
if path_save =='':
|
||||
path_save = datetime.datetime.now().strftime("%Y_%m_%d_%H%M_hrs_")
|
||||
|
||||
if base_file_name =='':
|
||||
@ -573,34 +577,114 @@ def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float,
|
||||
np.savetxt("Wavelength.txt", wl)
|
||||
|
||||
|
||||
def create_discrete_b_field_list(radius, start_angle, end_angle, step_size):
|
||||
# TODO: docs
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
radius (_type_): _description_
|
||||
start_angle (_type_): _description_
|
||||
end_angle (_type_): _description_
|
||||
step_size (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
""" """"""
|
||||
# Initialize lists to hold angles and (x, y) pairs
|
||||
angles = []
|
||||
coordinates = []
|
||||
|
||||
# Normalize angles to the range [0, 360)
|
||||
start_angle = start_angle % 360
|
||||
end_angle = end_angle % 360
|
||||
|
||||
# Calculate the clockwise and counterclockwise differences
|
||||
clockwise_diff = (start_angle - end_angle) % 360
|
||||
counterclockwise_diff = (end_angle - start_angle) % 360
|
||||
|
||||
# Determine the shorter path
|
||||
if clockwise_diff <= counterclockwise_diff:
|
||||
# Clockwise is shorter
|
||||
current_angle = start_angle
|
||||
while current_angle >= end_angle:
|
||||
# Append the current angle to the angles list
|
||||
angles.append(current_angle % 360)
|
||||
|
||||
# Convert the current angle to radians
|
||||
current_angle_rad = math.radians(current_angle % 360)
|
||||
|
||||
# Convert polar to Cartesian coordinates
|
||||
x = radius * math.cos(current_angle_rad)
|
||||
y = radius * math.sin(current_angle_rad)
|
||||
|
||||
# Append the (x, y) pair to the list
|
||||
coordinates.append((x, y))
|
||||
|
||||
# Check if we've reached the end_angle
|
||||
if (current_angle ) % 360 == end_angle:
|
||||
break
|
||||
|
||||
# Decrement the current angle by the step size
|
||||
current_angle -= step_size
|
||||
else:
|
||||
# Counterclockwise is shorter
|
||||
current_angle = start_angle
|
||||
while current_angle <= end_angle:
|
||||
# Append the current angle to the angles list
|
||||
angles.append(current_angle % 360)
|
||||
|
||||
# Convert the current angle to radians
|
||||
current_angle_rad = math.radians(current_angle % 360)
|
||||
|
||||
# Convert polar to Cartesian coordinates
|
||||
x = radius * math.cos(current_angle_rad)
|
||||
y = radius * math.sin(current_angle_rad)
|
||||
|
||||
# Append the (x, y) pair to the list
|
||||
coordinates.append((x, y))
|
||||
|
||||
# Check if we've reached the end_angle
|
||||
if (current_angle ) % 360 == end_angle:
|
||||
break
|
||||
|
||||
# Increment the current angle by the step size
|
||||
current_angle += step_size
|
||||
|
||||
return [angles, coordinates]
|
||||
|
||||
|
||||
# TODO: write a function that simultaneously controls the two power supplies and perform the rotation of the B-field. => Threading
|
||||
# in function head should be func(instr1, instr2, args1, kwargs1, args2, kwargs2)
|
||||
def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.Resource,
|
||||
Babs:float, startangle:float, endangle:float, angle_stepsize:float, path_save:str, base_file_name:str, anticlockwise=True, sweepdown=False)->None:
|
||||
"""_summary_
|
||||
Babs:float, startangle:float, endangle:float, angle_stepsize:float, path_save='', base_file_name='', sweepdown=False)->None:
|
||||
"""Rotation of the b-field in discrete steps, spectrum is measured at each discrete step in the rotation. Scan angle is
|
||||
defined as the angle between the x-axis and the current B-field vector, i.e., in the anticlockwise direction.
|
||||
|
||||
Args:
|
||||
instr1 (pyvisa.resources.Resource): _description_
|
||||
instr2 (pyvisa.resources.Resource): _description_
|
||||
Babs (float): absolute B-field value in T
|
||||
startangle (float): _description_
|
||||
endangle (float): _description_
|
||||
angle_stepsize (float): _description_
|
||||
anticlockwise (bool, optional): _description_. Defaults to True.
|
||||
sweepdown (bool, optional): _description_. Defaults to False.
|
||||
startangle (float): start angle in degrees
|
||||
endangle (float): end angle in degrees
|
||||
angle_stepsize (float): angle step size in degrees
|
||||
sweepdown (bool, optional): after finishing the rotation, both B-field components should be set to 0 T. Defaults to False.
|
||||
"""
|
||||
if path_save is None:
|
||||
if path_save =='':
|
||||
path_save = datetime.datetime.now().strftime("%Y_%m_%d_%H%M_hrs_") # TODO: add path_save, base_file_name in the function header
|
||||
|
||||
if base_file_name =='':
|
||||
base_file_name = datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')
|
||||
|
||||
start_time = time.time() # start of the scan function
|
||||
|
||||
idnstr1 = query_no_echo(instr1, '*IDN?')
|
||||
startangle = startangle % 360
|
||||
endangle = endangle % 360 # ensures that the angles are within [0,360)
|
||||
|
||||
idnstr1 = query_no_echo(instr1, '*IDN?')
|
||||
idnstr2 = query_no_echo(instr1, '*IDN?')
|
||||
|
||||
intensity_data = [] # To store data from each scan
|
||||
cwd = os.getcwd() # save original directory
|
||||
|
||||
# TODO: find which one is the dual power supply, then, ramp B_x to Babs value
|
||||
if '2301034' in idnstr1: # serial no. the dual power supply
|
||||
pass
|
||||
@ -608,6 +692,20 @@ def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.R
|
||||
# swap instruments, instr 1 to be the dual power supply
|
||||
instr1, instr2 = instr2, instr1
|
||||
|
||||
# initialise the sweep angle list as well as the sweep limits and directions for each instrument
|
||||
instr1_lim, instr2_lim = 'LLIM', 'ULIM'
|
||||
instr1_sweep, instr2_sweep = 'DOWN', 'UP'
|
||||
angles_lst = np.arange(startangle, endangle + angle_stepsize, angle_stepsize) # TODO: check to see if this considers 0° crossover or not
|
||||
# TODO: this does not consider 0° crossover, try to fix
|
||||
anticlockwise_bool = True
|
||||
|
||||
if startangle > endangle:
|
||||
# reverse list of angles, as well as the sweep limits and directions, for clockwise rotation
|
||||
angles_lst = np.arange(startangle, endangle - angle_stepsize, - angle_stepsize)
|
||||
instr1_lim, instr2_lim = instr2_lim, instr1_lim
|
||||
instr1_sweep, instr2_sweep = instr2_sweep, instr1_sweep
|
||||
anticlockwise_bool = False
|
||||
|
||||
# TODO: compare which device has the lower rates, save initial rates lists, then set both devices to the lower rates for each range
|
||||
# then, set the initial values back
|
||||
# list of rates (with units) for diff ranges of each device, only up to Range 1 for single power supply as that is already
|
||||
@ -617,14 +715,14 @@ def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.R
|
||||
|
||||
min_range_lst = [min(el1[0], el2[0]) for el1,el2 in zip(init_range_lst1, init_range_lst2)] # min rates for each given range
|
||||
|
||||
# set both devices to the min rates
|
||||
write_no_echo(instr1, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}')
|
||||
write_no_echo(instr2, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}')
|
||||
|
||||
# TODO: check the device rates and ranges in the lab tmrw or friday
|
||||
|
||||
write_no_echo(instr1, f'CHAN 2;ULIM {Babs*10};SWEEP UP') # sets to B_x, the B_x upper limit and sweeps the magnet field to the upper limit
|
||||
print(f'SWEEPING B-X TO {Babs} T NOW')
|
||||
|
||||
|
||||
# TODO: include the functionalities located in the function above, update function header with the new parameters of path_save, base_file_name
|
||||
|
||||
|
||||
################################################################# END OF FUNCTION DEFS ###########################################################################################
|
||||
|
Loading…
Reference in New Issue
Block a user