addition of create_discrete_b_field_list, progress on b_field_rotation

This commit is contained in:
Ryan Tan 2024-08-23 09:49:39 +02:00
parent 4881f4de3d
commit 0c21e935ed

View File

@ -7,6 +7,7 @@ Lightfield + Positioner
############################################
# Packages from Ryan
import re
import math
from threading import Thread
import pyvisa
# from pyvisa import ResourceManager, constants
@ -303,6 +304,7 @@ def sep_num_from_units(powerbox_output :str)->list:
else:
return [powerbox_output,]
def query_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str:
"""helper function for the Attocube APS100 that queries a function to the device, removing the echo.
@ -327,6 +329,7 @@ def query_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->st
print(f"Error communicating with instrument: {e}")
return None
def write_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str:
"""helper function for the Attocube APS100 that writes a function to the device, removing the echo.
@ -353,11 +356,12 @@ def write_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->st
except pyvisa.VisaIOError as e:
print(f"Error communicating with instrument: {e}")
# receive values in units of T, rescale in kg to talk with the power supplyy. 1T = 10kG
# NOTE: removed singlepowersupply_bool, reading serial-nr. of the device instead.
# old save folder: "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test"
def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float,
res:float, magnet_coil:str, Settings:str, base_file_name='', path_save=None,
res:float, magnet_coil:str, Settings:str, base_file_name='', path_save='',
reversescan_bool=False, zerowhenfin_bool=False, loopscan_bool=False)->None:
# TODO: update docs in the end
""" this function performs a sweep of the B field of the chosen magnet coil. It creates a list o B values from the given min and max values,
@ -401,7 +405,7 @@ def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float,
else:
raise TypeError('Please input a list!')
if path_save is None:
if path_save =='':
path_save = datetime.datetime.now().strftime("%Y_%m_%d_%H%M_hrs_")
if base_file_name =='':
@ -573,34 +577,114 @@ def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float,
np.savetxt("Wavelength.txt", wl)
def create_discrete_b_field_list(radius, start_angle, end_angle, step_size):
# TODO: docs
"""_summary_
Args:
radius (_type_): _description_
start_angle (_type_): _description_
end_angle (_type_): _description_
step_size (_type_): _description_
Returns:
_type_: _description_
""" """"""
# Initialize lists to hold angles and (x, y) pairs
angles = []
coordinates = []
# Normalize angles to the range [0, 360)
start_angle = start_angle % 360
end_angle = end_angle % 360
# Calculate the clockwise and counterclockwise differences
clockwise_diff = (start_angle - end_angle) % 360
counterclockwise_diff = (end_angle - start_angle) % 360
# Determine the shorter path
if clockwise_diff <= counterclockwise_diff:
# Clockwise is shorter
current_angle = start_angle
while current_angle >= end_angle:
# Append the current angle to the angles list
angles.append(current_angle % 360)
# Convert the current angle to radians
current_angle_rad = math.radians(current_angle % 360)
# Convert polar to Cartesian coordinates
x = radius * math.cos(current_angle_rad)
y = radius * math.sin(current_angle_rad)
# Append the (x, y) pair to the list
coordinates.append((x, y))
# Check if we've reached the end_angle
if (current_angle ) % 360 == end_angle:
break
# Decrement the current angle by the step size
current_angle -= step_size
else:
# Counterclockwise is shorter
current_angle = start_angle
while current_angle <= end_angle:
# Append the current angle to the angles list
angles.append(current_angle % 360)
# Convert the current angle to radians
current_angle_rad = math.radians(current_angle % 360)
# Convert polar to Cartesian coordinates
x = radius * math.cos(current_angle_rad)
y = radius * math.sin(current_angle_rad)
# Append the (x, y) pair to the list
coordinates.append((x, y))
# Check if we've reached the end_angle
if (current_angle ) % 360 == end_angle:
break
# Increment the current angle by the step size
current_angle += step_size
return [angles, coordinates]
# TODO: write a function that simultaneously controls the two power supplies and perform the rotation of the B-field. => Threading
# in function head should be func(instr1, instr2, args1, kwargs1, args2, kwargs2)
def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.Resource,
Babs:float, startangle:float, endangle:float, angle_stepsize:float, path_save:str, base_file_name:str, anticlockwise=True, sweepdown=False)->None:
"""_summary_
Babs:float, startangle:float, endangle:float, angle_stepsize:float, path_save='', base_file_name='', sweepdown=False)->None:
"""Rotation of the b-field in discrete steps, spectrum is measured at each discrete step in the rotation. Scan angle is
defined as the angle between the x-axis and the current B-field vector, i.e., in the anticlockwise direction.
Args:
instr1 (pyvisa.resources.Resource): _description_
instr2 (pyvisa.resources.Resource): _description_
Babs (float): absolute B-field value in T
startangle (float): _description_
endangle (float): _description_
angle_stepsize (float): _description_
anticlockwise (bool, optional): _description_. Defaults to True.
sweepdown (bool, optional): _description_. Defaults to False.
startangle (float): start angle in degrees
endangle (float): end angle in degrees
angle_stepsize (float): angle step size in degrees
sweepdown (bool, optional): after finishing the rotation, both B-field components should be set to 0 T. Defaults to False.
"""
if path_save is None:
if path_save =='':
path_save = datetime.datetime.now().strftime("%Y_%m_%d_%H%M_hrs_") # TODO: add path_save, base_file_name in the function header
if base_file_name =='':
base_file_name = datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')
start_time = time.time() # start of the scan function
idnstr1 = query_no_echo(instr1, '*IDN?')
startangle = startangle % 360
endangle = endangle % 360 # ensures that the angles are within [0,360)
idnstr1 = query_no_echo(instr1, '*IDN?')
idnstr2 = query_no_echo(instr1, '*IDN?')
intensity_data = [] # To store data from each scan
cwd = os.getcwd() # save original directory
# TODO: find which one is the dual power supply, then, ramp B_x to Babs value
if '2301034' in idnstr1: # serial no. the dual power supply
pass
@ -608,6 +692,20 @@ def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.R
# swap instruments, instr 1 to be the dual power supply
instr1, instr2 = instr2, instr1
# initialise the sweep angle list as well as the sweep limits and directions for each instrument
instr1_lim, instr2_lim = 'LLIM', 'ULIM'
instr1_sweep, instr2_sweep = 'DOWN', 'UP'
angles_lst = np.arange(startangle, endangle + angle_stepsize, angle_stepsize) # TODO: check to see if this considers 0° crossover or not
# TODO: this does not consider 0° crossover, try to fix
anticlockwise_bool = True
if startangle > endangle:
# reverse list of angles, as well as the sweep limits and directions, for clockwise rotation
angles_lst = np.arange(startangle, endangle - angle_stepsize, - angle_stepsize)
instr1_lim, instr2_lim = instr2_lim, instr1_lim
instr1_sweep, instr2_sweep = instr2_sweep, instr1_sweep
anticlockwise_bool = False
# TODO: compare which device has the lower rates, save initial rates lists, then set both devices to the lower rates for each range
# then, set the initial values back
# list of rates (with units) for diff ranges of each device, only up to Range 1 for single power supply as that is already
@ -617,14 +715,14 @@ def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.R
min_range_lst = [min(el1[0], el2[0]) for el1,el2 in zip(init_range_lst1, init_range_lst2)] # min rates for each given range
# set both devices to the min rates
write_no_echo(instr1, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}')
write_no_echo(instr2, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}')
# TODO: check the device rates and ranges in the lab tmrw or friday
write_no_echo(instr1, f'CHAN 2;ULIM {Babs*10};SWEEP UP') # sets to B_x, the B_x upper limit and sweeps the magnet field to the upper limit
print(f'SWEEPING B-X TO {Babs} T NOW')
# TODO: include the functionalities located in the function above, update function header with the new parameters of path_save, base_file_name
################################################################# END OF FUNCTION DEFS ###########################################################################################