progreess on b_field_rotation; TODO: finish the tail end of the func, copy from b_val_sweep

This commit is contained in:
Ryan Tan 2024-08-28 12:53:28 +02:00
parent 080ce6b1e6
commit 54a2948d0b

View File

@ -8,7 +8,7 @@ Lightfield + Positioner
# Packages from Ryan # Packages from Ryan
import re import re
import math import math
from threading import Thread import threading
import pyvisa import pyvisa
# from pyvisa import ResourceManager, constants # from pyvisa import ResourceManager, constants
@ -672,9 +672,6 @@ def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.R
clockwise (bool): determines the direction of rotation of the B-field. Defaults to True. clockwise (bool): determines the direction of rotation of the B-field. Defaults to True.
sweepdown (bool, optional): after finishing the rotation, both B-field components should be set to 0 T. Defaults to False. sweepdown (bool, optional): after finishing the rotation, both B-field components should be set to 0 T. Defaults to False.
""" """
def wait_for_b_val_helper_func(instr,):
pass
if path_save =='': if path_save =='':
path_save = datetime.datetime.now().strftime("%Y_%m_%d_%H%M_hrs_") # TODO: add path_save, base_file_name in the function header path_save = datetime.datetime.now().strftime("%Y_%m_%d_%H%M_hrs_") # TODO: add path_save, base_file_name in the function header
@ -702,7 +699,9 @@ def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.R
# initialise the sweep angle list as well as the sweep limits and directions for each instrument # initialise the sweep angle list as well as the sweep limits and directions for each instrument
instr1_lim, instr2_lim = 'LLIM', 'ULIM' instr1_lim, instr2_lim = 'LLIM', 'ULIM'
instr1_sweep, instr2_sweep = 'DOWN', 'UP' instr1_sweep, instr2_sweep = 'DOWN', 'UP'
angles, cartesian_coords = polar_to_cartesian(Babs, startangle, endangle, angle_stepsize, clockwise=clockwise) # create lists of angles and discrete Cartesian coordinates
# create lists of angles and discrete Cartesian coordinates
angles, cartesian_coords = polar_to_cartesian(Babs, startangle, endangle, angle_stepsize, clockwise=clockwise)
if clockwise: # NOTE: old conditional was: startangle > endangle see if this works.... if clockwise: # NOTE: old conditional was: startangle > endangle see if this works....
# reverse sweep limits and directions for the clockwise rotation # reverse sweep limits and directions for the clockwise rotation
@ -733,29 +732,86 @@ def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.R
# TODO: begin the rotation of the B-field, saving the spectrum for each angle, including the start- and end angles # TODO: begin the rotation of the B-field, saving the spectrum for each angle, including the start- and end angles
# NOTE: implement PID control, possibly best option to manage the b field DO THIS LATER ON, WE DO DISCRETE B VALUES RN # NOTE: implement PID control, possibly best option to manage the b field DO THIS LATER ON, WE DO DISCRETE B VALUES RN
# bug fix for polar_to_cartesian (27.08.2024, 15:52 hrs) # TODO: define the helper functions for threading here, write the commented code inside this function and call the function below + the other
# TODO: write the for loop for the rotation here, implement threading => create a helper function to enter into the threads # functionalities in b_val_sweep later on....
for idx, angle in enumerate(angles): # SEE ThreadTest2.py for the helper functions
pass # Helper function that listens to a device
# # we acquire with the LF def listen_to_device(device_id, target_value, shared_values, lock, all_targets_met_event):
# acquire_name_spe = f'{base_file_name}_{bval}T' while not all_targets_met_event.is_set(): # Loop until the event is set
# AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name. # value = 0 # Simulate receiving a float from the device INSERT QUERY NO ECHO HERE TO ASK FOR DEVICE IMAG
if '2301034' in device_id:
# # read the .spe file and get the data as loaded_files value = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1 # convert kG to T
# cwd = os.getcwd() # save original directory elif '2101014' in device_id:
# os.chdir(path_save) #change directory value = sep_num_from_units(query_no_echo(instr2, 'IMAG?'))[0]*0.1 # convert kG to T
# loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable print(f"Device {device_id} reports value: {value} T")
# os.chdir(cwd) # go back to original directory
with lock:
# # Delete the created .spe file from acquiring after getting necessary info shared_values[device_id] = value
# spe_file_path = os.path.join(path_save, acquire_name_spe + '.spe') # Check if both devices have met their targets
# os.remove(spe_file_path) if all(shared_values.get(device) is not None and abs(shared_values[device] - target_value[device]) <= 0.0001
for device in shared_values): # TODO: MODIFY THE IF CONDITIONAL HERE TO THAT IN B VAL SWEEP
# points_left = total_points - i - 1 # TODO: SEE IF THIS IS CORRECT print(f"Both devices reached their target values: {shared_values}")
# print('Points left in the scan: ', points_left) all_targets_met_event.set() # Signal that both targets are met
# #append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins) # time.sleep(1) # Simulate periodic data checking
# intensity_data.append(loaded_files.data[0][0][0])
# Main function to manage threads and iterate over target values
def monitor_devices(device_target_values, angles_lst):
for iteration, target in enumerate(device_target_values):
print(f"\nStarting iteration {iteration+1} for target values: {target}")
# Shared dictionary to store values from devices
shared_values = {device: None for device in target.keys()}
# Event to signal when both target values are reached
all_targets_met_event = threading.Event()
# Lock to synchronize access to shared_values
lock = threading.Lock()
# Create and start threads for each device
threads = []
for device_id in target.keys():
thread = threading.Thread(target=listen_to_device, args=(device_id, target, shared_values, lock, all_targets_met_event))
threads.append(thread)
thread.start()
# Wait until both devices meet their target values
all_targets_met_event.wait()
print(f"Both target values for iteration {iteration+1} met. Performing action...")
# Perform some action after both targets are met
# we acquire with the LF
acquire_name_spe = f'{base_file_name}_{angles_lst[iteration]}°' # NOTE: save each intensity file with the given angle
AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name.
# read the .spe file and get the data as loaded_files
cwd = os.getcwd() # save original directory
os.chdir(path_save) #change directory
loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable
os.chdir(cwd) # go back to original directory
# Delete the created .spe file from acquiring after getting necessary info
spe_file_path = os.path.join(path_save, acquire_name_spe + '.spe')
os.remove(spe_file_path)
# points_left = total_points - i - 1 # TODO: SEE IF THIS IS CORRECT
# print('Points left in the scan: ', points_left)
#append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins)
intensity_data.append(loaded_files.data[0][0][0])
# Clean up threads
for thread in threads:
thread.join()
print(f"Threads for iteration {iteration+1} closed.\n")
# modify cartesian_coords to suite the required data struct in monitor_devices
cartesian_coords = [{'2301034': t[0], '2101014': t[1]} for t in cartesian_coords]
monitor_devices(cartesian_coords, angles)
# TODO: add the end functionalities for saving the intensity data (see b-val_sweep), modify if necessary
# SEE LINES 554 TO 577 in code (version on 28.08.2024, 12.49 hrs)
################################################################# END OF FUNCTION DEFS ########################################################################################### ################################################################# END OF FUNCTION DEFS ###########################################################################################