Compare commits
No commits in common. "c93d4ff2f7e5af54f531b72dc4ad28e577058a94" and "78b2aa6ba7fdeac3b8457f230af8e8edb07f4286" have entirely different histories.
c93d4ff2f7
...
78b2aa6ba7
@ -1,33 +0,0 @@
|
|||||||
import re
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
def sep_num_from_units(powerbox_output :str)->list:
|
|
||||||
'''
|
|
||||||
Receives a string as input and separates the numberic value and unit and returns it as a list.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
powerbox_output : str
|
|
||||||
string output from the attocube powerbox, e.g. 1.35325kG
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
list
|
|
||||||
list of float value and string (b value and it's units). If string is purely alphabets, then return a single element list
|
|
||||||
|
|
||||||
'''
|
|
||||||
match = re.match(r'\s*([+-]?\d*\.?\d+)([A-Za-z]+)', powerbox_output)
|
|
||||||
if match:
|
|
||||||
numeric_part = float(match.group(1)) # Convert the numeric part to a float
|
|
||||||
alphabetic_part = match.group(2) # Get the alphabetic part
|
|
||||||
return [numeric_part, alphabetic_part]
|
|
||||||
else:
|
|
||||||
return [powerbox_output,]
|
|
||||||
|
|
||||||
angles = [1,2,3]
|
|
||||||
|
|
||||||
print(str(angles[0]) +"\n"+ str(angles[-1]))
|
|
||||||
|
|
||||||
rates_lst = list(sep_num_from_units(el) for el in "0.0kG;1.0kG".split(";"))
|
|
||||||
|
|
||||||
print(rates_lst[1][0])
|
|
File diff suppressed because it is too large
Load Diff
@ -1,355 +0,0 @@
|
|||||||
# -*- coding: utf-8 -*-
|
|
||||||
"""
|
|
||||||
Created on Fri Dec 22 15:10:10 2023
|
|
||||||
Lightfield + Positioner
|
|
||||||
@author: Local Admin
|
|
||||||
"""
|
|
||||||
import AMC
|
|
||||||
import csv
|
|
||||||
import time
|
|
||||||
import clr
|
|
||||||
import sys
|
|
||||||
import os
|
|
||||||
import spe2py as spe
|
|
||||||
import spe_loader as sl
|
|
||||||
import pandas as pd
|
|
||||||
import time
|
|
||||||
from System.IO import *
|
|
||||||
from System import String
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import datetime
|
|
||||||
|
|
||||||
|
|
||||||
#First choose your controller
|
|
||||||
IP_AMC300 = "192.168.71.101"
|
|
||||||
IP_AMC100 = "192.168.71.100"
|
|
||||||
|
|
||||||
# IP = "192.168.1.1"
|
|
||||||
IP = IP_AMC300
|
|
||||||
|
|
||||||
|
|
||||||
# Import os module
|
|
||||||
import os, glob, string
|
|
||||||
|
|
||||||
# Import System.IO for saving and opening files
|
|
||||||
from System.IO import *
|
|
||||||
|
|
||||||
from System.Threading import AutoResetEvent
|
|
||||||
|
|
||||||
# Import C compatible List and String
|
|
||||||
from System import String
|
|
||||||
from System.Collections.Generic import List
|
|
||||||
|
|
||||||
# Add needed dll references
|
|
||||||
sys.path.append(os.environ['LIGHTFIELD_ROOT'])
|
|
||||||
sys.path.append(os.environ['LIGHTFIELD_ROOT']+"\\AddInViews")
|
|
||||||
sys.path.append(r'C:\Program Files\Princeton Instruments\LightField\AddInViews') #I added them by hand -serdar
|
|
||||||
sys.path.append(r'C:\Program Files\Princeton Instruments\LightField') #this one also
|
|
||||||
clr.AddReference('PrincetonInstruments.LightFieldViewV5')
|
|
||||||
clr.AddReference('PrincetonInstruments.LightField.AutomationV5')
|
|
||||||
clr.AddReference('PrincetonInstruments.LightFieldAddInSupportServices')
|
|
||||||
os.environ['LIGHTFIELD_ROOT'] = r'C:\Program Files\Princeton Instruments\LightField'
|
|
||||||
# PI imports
|
|
||||||
from PrincetonInstruments.LightField.Automation import Automation
|
|
||||||
from PrincetonInstruments.LightField.AddIns import ExperimentSettings
|
|
||||||
from PrincetonInstruments.LightField.AddIns import CameraSettings
|
|
||||||
#from PrincetonInstruments.LightField.AddIns import DeviceType
|
|
||||||
from PrincetonInstruments.LightField.AddIns import SpectrometerSettings
|
|
||||||
from PrincetonInstruments.LightField.AddIns import RegionOfInterest
|
|
||||||
|
|
||||||
######################################################################################################### code begins from here #############################################
|
|
||||||
|
|
||||||
def set_custom_ROI():
|
|
||||||
|
|
||||||
# Get device full dimensions
|
|
||||||
dimensions = experiment.FullSensorRegion()
|
|
||||||
|
|
||||||
regions = []
|
|
||||||
|
|
||||||
# Add two ROI to regions
|
|
||||||
regions.append(
|
|
||||||
RegionOfInterest(
|
|
||||||
int(dimensions.X), int(dimensions.Y),
|
|
||||||
int(dimensions.Width), int(dimensions.Height//4), # Use // for integer division
|
|
||||||
int(dimensions.XBinning), int(dimensions.Height//4)))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Set both ROI
|
|
||||||
experiment.SetCustomRegions(regions)
|
|
||||||
|
|
||||||
def experiment_completed(sender, event_args): #callback function which is hooked to event completed, this is the listener
|
|
||||||
print("... Acquisition Complete!")
|
|
||||||
acquireCompleted.Set() #set the event. This puts the autoresetevent false.(look at .NET library for furher info)
|
|
||||||
|
|
||||||
def InitializerFilenameParams():
|
|
||||||
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachIncrement, False)
|
|
||||||
experiment.SetValue(ExperimentSettings.FileNameGenerationIncrementNumber, 1.0)
|
|
||||||
experiment.SetValue(ExperimentSettings.FileNameGenerationIncrementMinimumDigits, 2.0)
|
|
||||||
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachDate, False)
|
|
||||||
experiment.SetValue(ExperimentSettings.FileNameGenerationAttachTime, False)
|
|
||||||
|
|
||||||
def AcquireAndLock(name):
|
|
||||||
print("Acquiring...", end = "")
|
|
||||||
# name += 'Exp{0:06.2f}ms.CWL{1:07.2f}nm'.format(\
|
|
||||||
# experiment.GetValue(CameraSettings.ShutterTimingExposureTime)\
|
|
||||||
# ,experiment.GetValue(SpectrometerSettings.GratingCenterWavelength))
|
|
||||||
|
|
||||||
experiment.SetValue(ExperimentSettings.FileNameGenerationBaseFileName, name) #this creates .spe file with the name
|
|
||||||
experiment.Acquire() # this is an ashynrchronus func.
|
|
||||||
acquireCompleted.WaitOne()
|
|
||||||
|
|
||||||
def calculate_distance(x1, y1, x2, y2):
|
|
||||||
return np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
|
||||||
|
|
||||||
def generate_scan_positions(center, range_val, resolution):
|
|
||||||
positive_range = np.arange(center, center + range_val + resolution, resolution)
|
|
||||||
return positive_range
|
|
||||||
|
|
||||||
def save_as_csv(filename, position_x, position_y):
|
|
||||||
file_existance = os.path.isfile(filename)
|
|
||||||
|
|
||||||
with open(filename, 'a', newline = '') as csvfile:
|
|
||||||
writer = csv.writer(csvfile)
|
|
||||||
|
|
||||||
if not file_existance:
|
|
||||||
writer.writerow(['x_coordinates','y_coordinates'])
|
|
||||||
|
|
||||||
writer.writerow([position_x, position_y])
|
|
||||||
|
|
||||||
def move_axis(axis, target):
|
|
||||||
"""
|
|
||||||
This function moves an axis to the specified target and stop moving after it is in the really closed
|
|
||||||
vicinity (+- 25nm) of the target (listener hooked to it).
|
|
||||||
"""
|
|
||||||
amc.move.setControlTargetPosition(axis, target)
|
|
||||||
amc.control.setControlMove(axis, True)
|
|
||||||
# while not (target - 25) < amc.move.getPosition(axis) < (target + 25):
|
|
||||||
# time.sleep(0.1)
|
|
||||||
# time.sleep(0.15)
|
|
||||||
# while not (target - 25) < amc.move.getPosition(axis) < (target + 25):
|
|
||||||
# time.sleep(0.1)
|
|
||||||
# amc.control.setControlMove(axis, False)
|
|
||||||
|
|
||||||
def move_xy(target_x, target_y): # moving in x and y direction closed to desired position
|
|
||||||
amc.move.setControlTargetPosition(0, target_x)
|
|
||||||
amc.control.setControlMove(0, True)
|
|
||||||
amc.move.setControlTargetPosition(1, target_y)
|
|
||||||
amc.control.setControlMove(1, True)
|
|
||||||
while not (target_x - 25) < amc.move.getPosition(0) < (target_x + 25) and (target_y - 25) < amc.move.getPosition(1) < (target_y + 25):
|
|
||||||
time.sleep(0.1)
|
|
||||||
time.sleep(0.15)
|
|
||||||
while not (target_x - 25) < amc.move.getPosition(0) < (target_x + 25) and (target_y - 25) < amc.move.getPosition(1) < (target_y + 25):
|
|
||||||
time.sleep(0.1)
|
|
||||||
|
|
||||||
amc.control.setControlOutput(0, False)
|
|
||||||
amc.control.setControlOutput(1, False)
|
|
||||||
|
|
||||||
|
|
||||||
# intensity_data = [] # To store data from each scan
|
|
||||||
# data_list = []
|
|
||||||
|
|
||||||
def move_scan_xy(range_x, range_y, resolution, Settings, baseFileName):
|
|
||||||
"""
|
|
||||||
This function moves the positioners to scan the sample with desired ranges and resolution in 2 dimensions.
|
|
||||||
At the end it saves a csv file
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
range_x : integer in nm. max value is 5um
|
|
||||||
Scan range in x direction.
|
|
||||||
range_y : integer in nm. max value is 5um
|
|
||||||
Scan range in y direction.
|
|
||||||
resolution : integer in nm.
|
|
||||||
Room temprature max res is 50nm. In cyrostat (4K) it is 10nm (check the Attocube manual)
|
|
||||||
baseFileName: string. At the end the saved file will be: baseFileName_scan_data.csv and it will be saved to the current directory
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
None.
|
|
||||||
|
|
||||||
"""
|
|
||||||
start_time = time.time()
|
|
||||||
axis_x = 0 #first axis
|
|
||||||
axis_y = 1 #second axis
|
|
||||||
center_x = amc.move.getPosition(axis_x)
|
|
||||||
center_y = amc.move.getPosition(axis_y)
|
|
||||||
# #check if the intput range is reasonable
|
|
||||||
# if amc.move.getPosition(axis_x) + range_x >= 5000 or amc.move.getPosition(axis_x)- range_x <= 0 or amc.move.getPosition(axis_y) + range_y >=5000 or amc.move.getPosition(axis_y) - range_y <= 5000 :
|
|
||||||
# print("scan range is out of range!")
|
|
||||||
# return
|
|
||||||
# +- range from current positions for x and y directions
|
|
||||||
|
|
||||||
|
|
||||||
array_x = generate_scan_positions(center_x, range_x, resolution)
|
|
||||||
array_y = generate_scan_positions(center_y, range_y, resolution)
|
|
||||||
total_points = len(array_x)*len(array_y)
|
|
||||||
len_y = len(array_y)
|
|
||||||
intensity_data = [] # To store data from each scan
|
|
||||||
data_list = []
|
|
||||||
cwd = os.getcwd() # save original directory
|
|
||||||
|
|
||||||
#This gives a directory, in which the script will save the spectrum of each spot as spe
|
|
||||||
#However, it will open the spectrum, convert it to txt, add it to the intensity_data and delete the spe file
|
|
||||||
Path_save = "C:/Users/localadmin/Desktop/Users/Lukas/Map_dump"
|
|
||||||
|
|
||||||
#scanning loop
|
|
||||||
for i, x_positions in enumerate(array_x):
|
|
||||||
move_axis(axis_x, x_positions)
|
|
||||||
y = False
|
|
||||||
|
|
||||||
for j, y_positions in enumerate(array_y):
|
|
||||||
move_axis(axis_y, y_positions)
|
|
||||||
time.sleep(2)
|
|
||||||
if j == 0:
|
|
||||||
time.sleep(10)
|
|
||||||
#each time when the positioner comes to the beggining of a new line
|
|
||||||
#this if will make the positioner wait a bit longer to really go to the target.
|
|
||||||
if y == False:
|
|
||||||
move_axis(axis_y, y_positions)
|
|
||||||
y = True
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#we acquire with the LF
|
|
||||||
acquire_name_spe = f'{baseFileName}_X{x_positions}_Y{y_positions}'
|
|
||||||
AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name.
|
|
||||||
|
|
||||||
#read the .spe file and get the data as loaded_files
|
|
||||||
cwd = os.getcwd() # save original directory
|
|
||||||
os.chdir(Path_save) #change directory
|
|
||||||
loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable
|
|
||||||
os.chdir(cwd) # go back to original directory
|
|
||||||
|
|
||||||
# Delete the created .spe file from acquiring after getting necessary info
|
|
||||||
spe_file_path = os.path.join(Path_save, acquire_name_spe + '.spe')
|
|
||||||
os.remove(spe_file_path)
|
|
||||||
|
|
||||||
distance = calculate_distance(x_positions, y_positions,amc.move.getPosition(axis_x), amc.move.getPosition(axis_y))
|
|
||||||
|
|
||||||
points_left = total_points - (i * len_y + (j+1)) + 1
|
|
||||||
print('Points left in the scan: ', points_left)
|
|
||||||
|
|
||||||
#append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins)
|
|
||||||
intensity_data.append(loaded_files.data[0][0][0])
|
|
||||||
|
|
||||||
data_list.append({
|
|
||||||
'position_x': x_positions,
|
|
||||||
'position_y': y_positions,
|
|
||||||
'actual_x': amc.move.getPosition(axis_x),
|
|
||||||
'actual_y': amc.move.getPosition(axis_y),
|
|
||||||
'distance': distance,
|
|
||||||
})
|
|
||||||
|
|
||||||
#moves back to starting position
|
|
||||||
move_axis(axis_x, center_x)
|
|
||||||
move_axis(axis_y, center_y)
|
|
||||||
|
|
||||||
#prints total time the mapping lasted
|
|
||||||
end_time = time.time()
|
|
||||||
elapsed_time = (end_time - start_time) / 60
|
|
||||||
print('Scan time: ', elapsed_time, 'minutes')
|
|
||||||
|
|
||||||
# df = pd.DataFrame(data_list)
|
|
||||||
|
|
||||||
#save intensity & WL data as .txt
|
|
||||||
os.chdir('C:/Users/localadmin/Desktop/Users/Priyanka/2025/stacked_2L/PL_Map_0T/250325')
|
|
||||||
# creates new folder for MAP data
|
|
||||||
new_folder_name = "PL_Map_By_0T_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}"
|
|
||||||
os.mkdir(new_folder_name)
|
|
||||||
# Here the things will be saved in a new folder under user Lukas !
|
|
||||||
# IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!!
|
|
||||||
os.chdir('C:/Users/localadmin/Desktop/Users/Priyanka/2025/stacked_2L/PL_Map_0T/250325/'+ new_folder_name)
|
|
||||||
|
|
||||||
intensity_data = np.array(intensity_data)
|
|
||||||
np.savetxt(Settings + str(center_x) + '_' + str(center_y) + experiment_name +'.txt', intensity_data)
|
|
||||||
|
|
||||||
wl = np.array(loaded_files.wavelength)
|
|
||||||
np.savetxt("Wavelength.txt", wl)
|
|
||||||
|
|
||||||
time.sleep(20)
|
|
||||||
|
|
||||||
amc.control.setControlMove(axis_x, False)
|
|
||||||
amc.control.setControlMove(axis_y, False)
|
|
||||||
|
|
||||||
# wl.to_csv("wl", index = False)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# #Plot the scan data
|
|
||||||
# plt.figure(figsize=(12, 6))
|
|
||||||
# # Plot 1: Target and Actual Positions
|
|
||||||
# plt.subplot(1, 2, 1)
|
|
||||||
# plt.scatter(df['position_x'], df['position_y'], c='green', label='Target Positions')
|
|
||||||
# plt.scatter(df['actual_x'], df['actual_y'], c='red', label='Actual Positions')
|
|
||||||
# plt.title('Scan Visualization')
|
|
||||||
# plt.xlabel('X Position')
|
|
||||||
# plt.ylabel('Y Position')
|
|
||||||
# plt.legend()
|
|
||||||
# plt.grid(True)
|
|
||||||
|
|
||||||
# #Plot 2: Distance from Target Position
|
|
||||||
# mean_distance = df['distance'].mean()
|
|
||||||
# plt.subplot(1, 2, 2)
|
|
||||||
# plt.plot(df['distance'], label='Distance from Target Position')
|
|
||||||
# plt.title(f'Distance from Target Position\nMean Distance: {mean_distance:.2f}')
|
|
||||||
# plt.xlabel('Scan Point')
|
|
||||||
# plt.ylabel('Distance')
|
|
||||||
# plt.subplot(1, 2, 2)
|
|
||||||
# plt.hist(df['distance'], bins=30, color='skyblue', edgecolor='black', alpha=0.7)
|
|
||||||
# plt.title(f'Distribution of Distance from Target Position\nMean Distance: {mean_distance:.2f} nm')
|
|
||||||
# plt.xlabel('Distance')
|
|
||||||
# plt.ylabel('Frequency')
|
|
||||||
# plt.legend()
|
|
||||||
# plt.grid(True)
|
|
||||||
# plt.text(0.95, 0.95, f'Herz: {(amc.control.getControlFrequency(0)/1000):.2f} Hz', horizontalalignment='right', verticalalignment='top', transform=plt.gca().transAxes)
|
|
||||||
# plt.text(0.95, 0.90, f'Scan Time: {elapsed_time:.2f} mins', horizontalalignment='right', verticalalignment='top', transform=plt.gca().transAxes)
|
|
||||||
# plt.text(0.95, 0.05, f"Scan Date: {datetime.datetime.now().strftime('%Y_%m_%d_%H%M')}", horizontalalignment='right', verticalalignment='bottom', transform=plt.gca().transAxes)
|
|
||||||
# plt.legend()
|
|
||||||
# plt.grid(True)
|
|
||||||
# plt.axhline(mean_distance, color='orange', linestyle='--', label=f'Mean Distance: {mean_distance:.2f}')
|
|
||||||
# plt.tight_layout()
|
|
||||||
|
|
||||||
# plt.savefig(Settings + str(center_x) + '_' + str(center_y) +'_' + experiment_name + '.png')
|
|
||||||
# plt.show()
|
|
||||||
# os.chdir(cwd)
|
|
||||||
|
|
||||||
# Setup connection to AMC
|
|
||||||
amc = AMC.Device(IP)
|
|
||||||
amc.connect()
|
|
||||||
|
|
||||||
# Internally, axes are numbered 0 to 2
|
|
||||||
# amc.control.setControlOutput(0, True)
|
|
||||||
# amc.control.setControlOutput(1, True)
|
|
||||||
|
|
||||||
|
|
||||||
auto = Automation(True, List[String]())
|
|
||||||
experiment = auto.LightFieldApplication.Experiment
|
|
||||||
acquireCompleted = AutoResetEvent(False)
|
|
||||||
|
|
||||||
experiment.Load("2025_02_13_Priyanka_CrSBr")
|
|
||||||
experiment.ExperimentCompleted += experiment_completed # we are hooking a listener.
|
|
||||||
# experiment.SetValue(SpectrometerSettings.GratingSelected, '[750nm,1200][0][0]')
|
|
||||||
# InitializerFilenameParams()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#set scna range and resolution in nanometers
|
|
||||||
|
|
||||||
range_x = 20000
|
|
||||||
range_y = 20000
|
|
||||||
resolution = 1000
|
|
||||||
|
|
||||||
#Here you can specify the filename of the map e.g. put experiment type, exposure time, used filters, etc....
|
|
||||||
experiment_settings = 'PL_he ne_stacked_2L_G150_P300uW_5s_test_l1_52_l2_260'
|
|
||||||
# experiment_settings = 'DR_NKT_OD2_rep_0.15_600g_cwl_660_exp_3s_Start_'
|
|
||||||
# experiment_settings = 'DR_Halogen_Lamp_lin_b-axis_600g_cwl_910_exp_2s_Start_'
|
|
||||||
#The program adds the range of the scan as well as the resolution and the date and time of the measurement
|
|
||||||
experiment_name = f"{range_x}nm_{range_y}nm_{resolution}nm_{datetime.datetime.now().strftime('%Y_%m_%d_%H%M')}"
|
|
||||||
|
|
||||||
|
|
||||||
move_scan_xy(range_x, range_y, resolution, experiment_settings, experiment_name)
|
|
||||||
|
|
||||||
# Internally, axes are numbered 0 to 2
|
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user