# -*- coding: utf-8 -*- """ Created on Fri Dec 22 15:10:10 2023 Lightfield + Positioner @author: Serdar, adjusted by Lukas """ ############################################ # Packages from Ryan import re import math import threading import pyvisa # from pyvisa import ResourceManager, constants # B Field Limits (in T) BX_MAX = 1.7 BY_MAX = 1.7 BZ_MAX = 4.0 ############################################ import AMC import csv import time import clr import sys import os import spe2py as spe import spe_loader as sl import pandas as pd import time from System.IO import * from System import String import numpy as np import matplotlib.pyplot as plt import datetime from typing import Union #First choose your controller IP_AMC300 = "192.168.1.1" IP_AMC100 = "192.168.71.100" # IP = "192.168.1.1" IP = IP_AMC100 # Import os module import os, glob, string # Import System.IO for saving and opening files from System.IO import * from System.Threading import AutoResetEvent # Import C compatible List and String from System import String from System.Collections.Generic import List # Add needed dll references sys.path.append(os.environ['LIGHTFIELD_ROOT']) sys.path.append(os.environ['LIGHTFIELD_ROOT']+"\\AddInViews") sys.path.append(r'C:\Program Files\Princeton Instruments\LightField\AddInViews') #I added them by hand -serdar sys.path.append(r'C:\Program Files\Princeton Instruments\LightField') #this one also clr.AddReference('PrincetonInstruments.LightFieldViewV5') clr.AddReference('PrincetonInstruments.LightField.AutomationV5') clr.AddReference('PrincetonInstruments.LightFieldAddInSupportServices') os.environ['LIGHTFIELD_ROOT'] = r'C:\Program Files\Princeton Instruments\LightField' # PI imports from PrincetonInstruments.LightField.Automation import Automation from PrincetonInstruments.LightField.AddIns import ExperimentSettings from PrincetonInstruments.LightField.AddIns import CameraSettings #from PrincetonInstruments.LightField.AddIns import DeviceType from PrincetonInstruments.LightField.AddIns import SpectrometerSettings from PrincetonInstruments.LightField.AddIns import RegionOfInterest ######################################################################################################### code begins from here ############################################# def set_custom_ROI(): # Get device full dimensions dimensions = experiment.FullSensorRegion() regions = [] # Add two ROI to regions regions.append( RegionOfInterest( int(dimensions.X), int(dimensions.Y), int(dimensions.Width), int(dimensions.Height//4), # Use // for integer division int(dimensions.XBinning), int(dimensions.Height//4))) # Set both ROI experiment.SetCustomRegions(regions) def experiment_completed(sender, event_args): #callback function which is hooked to event completed, this is the listener print("... Acquisition Complete!") acquireCompleted.Set() #set the event. This puts the autoresetevent false.(look at .NET library for furher info) def InitializerFilenameParams(): experiment.SetValue(ExperimentSettings.FileNameGenerationAttachIncrement, False) experiment.SetValue(ExperimentSettings.FileNameGenerationIncrementNumber, 1.0) experiment.SetValue(ExperimentSettings.FileNameGenerationIncrementMinimumDigits, 2.0) experiment.SetValue(ExperimentSettings.FileNameGenerationAttachDate, False) experiment.SetValue(ExperimentSettings.FileNameGenerationAttachTime, False) def AcquireAndLock(name): print("Acquiring...", end = "") # name += 'Exp{0:06.2f}ms.CWL{1:07.2f}nm'.format(\ # experiment.GetValue(CameraSettings.ShutterTimingExposureTime)\ # ,experiment.GetValue(SpectrometerSettings.GratingCenterWavelength)) experiment.SetValue(ExperimentSettings.FileNameGenerationBaseFileName, name) #this creates .spe file with the name experiment.Acquire() # this is an ashynrchronus func. acquireCompleted.WaitOne() def calculate_distance(x1, y1, x2, y2): return np.sqrt((x2 - x1)**2 + (y2 - y1)**2) def generate_scan_positions(center, range_val, resolution): positive_range = np.arange(center, center + range_val + resolution, resolution) return positive_range def save_as_csv(filename, position_x, position_y): file_existance = os.path.isfile(filename) with open(filename, 'a', newline = '') as csvfile: writer = csv.writer(csvfile) if not file_existance: writer.writerow(['x_coordinates','y_coordinates']) writer.writerow([position_x, position_y]) def move_axis(axis, target): """ This function moves an axis to the specified target and stop moving after it is in the really closed vicinity (+- 25nm) of the target (listener hooked to it). """ amc.move.setControlTargetPosition(axis, target) amc.control.setControlMove(axis, True) while not (target - 25) < amc.move.getPosition(axis) < (target + 25): time.sleep(0.1) time.sleep(0.15) while not (target - 25) < amc.move.getPosition(axis) < (target + 25): time.sleep(0.1) amc.control.setControlMove(axis, False) def move_xy(target_x, target_y): # moving in x and y direction closed to desired position amc.move.setControlTargetPosition(0, target_x) amc.control.setControlMove(0, True) amc.move.setControlTargetPosition(1, target_y) amc.control.setControlMove(1, True) while not (target_x - 25) < amc.move.getPosition(0) < (target_x + 25) and (target_y - 25) < amc.move.getPosition(1) < (target_y + 25): time.sleep(0.1) time.sleep(0.15) while not (target_x - 25) < amc.move.getPosition(0) < (target_x + 25) and (target_y - 25) < amc.move.getPosition(1) < (target_y + 25): time.sleep(0.1) amc.control.setControlOutput(0, False) amc.control.setControlOutput(1, False) # intensity_data = [] # To store data from each scan # data_list = [] def move_scan_xy(range_x, range_y, resolution, Settings, baseFileName): """ This function moves the positioners to scan the sample with desired ranges and resolution in 2 dimensions. At the end it saves a csv file Parameters ---------- range_x : integer in nm. max value is 5um Scan range in x direction. range_y : integer in nm. max value is 5um Scan range in y direction. resolution : integer in nm. Room temprature max res is 50nm. In cyrostat (4K) it is 10nm (check the Attocube manual) baseFileName: string. At the end the saved file will be: baseFileName_scan_data.csv and it will be saved to the current directory Returns ------- None. """ start_time = time.time() axis_x = 0 #first axis axis_y = 1 #second axis center_x = amc.move.getPosition(axis_x) center_y = amc.move.getPosition(axis_y) # #check if the intput range is reasonable # if amc.move.getPosition(axis_x) + range_x >= 5000 or amc.move.getPosition(axis_x)- range_x <= 0 or amc.move.getPosition(axis_y) + range_y >=5000 or amc.move.getPosition(axis_y) - range_y <= 5000 : # print("scan range is out of range!") # return # +- range from current positions for x and y directions array_x = generate_scan_positions(center_x, range_x, resolution) array_y = generate_scan_positions(center_y, range_y, resolution) total_points = len(array_x)*len(array_y) len_y = len(array_y) intensity_data = [] # To store data from each scan data_list = [] cwd = os.getcwd() # save original directory #This gives a directory, in which the script will save the spectrum of each spot as spe #However, it will open the spectrum, convert it to txt, add it to the intensity_data and delete the spe file temp_folder_path = "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test" #scanning loop for i, x_positions in enumerate(array_x): move_axis(axis_x, x_positions) y = False for j, y_positions in enumerate(array_y): move_axis(axis_y, y_positions) #each time when the positioner comes to the beggining of a new line #this if will make the positioner wait a bit longer to really go to the target. if y == False: move_axis(axis_y, y_positions) y = True #we acquire with the LF acquire_name_spe = f'{baseFileName}_X{x_positions}_Y{y_positions}' AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name. #read the .spe file and get the data as loaded_files cwd = os.getcwd() # save original directory os.chdir(temp_folder_path) #change directory loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable os.chdir(cwd) # go back to original directory # Delete the created .spe file from acquiring after getting necessary info spe_file_path = os.path.join(temp_folder_path, acquire_name_spe + '.spe') os.remove(spe_file_path) distance = calculate_distance(x_positions, y_positions,amc.move.getPosition(axis_x), amc.move.getPosition(axis_y)) points_left = total_points - (i * len_y + (j+1)) + 1 print('Points left in the scan: ', points_left) #append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins) intensity_data.append(loaded_files.data[0][0][0]) data_list.append({ 'position_x': x_positions, 'position_y': y_positions, 'actual_x': amc.move.getPosition(axis_x), 'actual_y': amc.move.getPosition(axis_y), 'distance': distance, }) #moves back to starting position move_axis(axis_x, center_x) move_axis(axis_y, center_y) #prints total time the mapping lasted end_time = time.time() elapsed_time = (end_time - start_time) / 60 print('Scan time: ', elapsed_time, 'minutes') # df = pd.DataFrame(data_list) #save intensity & WL data as .txt os.chdir('C:/Users/localadmin/Desktop/Users/Lukas') # creates new folder for MAP data new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}" os.mkdir(new_folder_name) # Here the things will be saved in a new folder under user Lukas ! # IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!! os.chdir('C:/Users/localadmin/Desktop/Users/Lukas/'+ new_folder_name) intensity_data = np.array(intensity_data) np.savetxt(Settings + str(center_x) + '_' + str(center_y) + experiment_name +'.txt', intensity_data) wl = np.array(loaded_files.wavelength) np.savetxt("Wavelength.txt", wl) ################################################################# RYAN'S FUNCTIONS HERE ########################################################################################## def sep_num_from_units(powerbox_output :str)->list: ''' Receives a string as input and separates the numberic value and unit and returns it as a list. Parameters ---------- powerbox_output : str string output from the attocube powerbox, e.g. 1.35325kG Returns ------- list list of float value and string (b value and it's units). If string is purely alphabets, then return a single element list ''' match = re.match(r'\s*([+-]?\d*\.?\d+)([A-Za-z]+)', powerbox_output) if match: numeric_part = float(match.group(1)) # Convert the numeric part to a float alphabetic_part = match.group(2) # Get the alphabetic part return [numeric_part, alphabetic_part] else: return [powerbox_output,] def query_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str: """helper function for the Attocube APS100 that queries a function to the device, removing the echo. Args: instr (pyvisa.resources.Resource): command (str): commands, can be stringed in series with ; between commands sleeptime (float, optional): delay time between commands. Defaults to 0.01. Returns: str: _description_ """ '''''' try: print(f"Sending command: {command}") instr.write(command) time.sleep(sleeptime) echo_response = instr.read() # Read and discard the echo # print(f"Echo response: {echo_response}") actual_response = instr.read() # Read the actual response print(f"Actual response: {actual_response}") return actual_response except pyvisa.VisaIOError as e: print(f"Error communicating with instrument: {e}") return None def write_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str: """helper function for the Attocube APS100 that writes a function to the device, removing the echo. Args: instr (pyvisa.resources.Resource): command (str): commands, can be stringed in series with ; between commands sleeptime (float, optional): delay time between commands. Defaults to 0.01. Returns: str: _description_ """ '''''' try: print(f"Sending command: {command}") instr.write(command) time.sleep(sleeptime) # Give the device some time to process try: while True: echo_response = instr.read() # Read and discard the echo # print(f"Echo response: {echo_response}") except pyvisa.VisaIOError as e: # Expected timeout after all echoed responses are read if e.error_code != pyvisa.constants.VI_ERROR_TMO: raise except pyvisa.VisaIOError as e: print(f"Error communicating with instrument: {e}") # receive values in units of T, rescale in kg to talk with the power supplyy. 1T = 10kG # NOTE: removed singlepowersupply_bool, reading serial-nr. of the device instead. # old save folder: "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test" def sweep_b_val(instr:pyvisa.resources.Resource, min_bval:float, max_bval:float, res:float, magnet_coil:str, Settings:str, base_file_name='', reversescan_bool=False, zerowhenfin_bool=False, loopscan_bool=False)->None: # TODO: update docs in the end """ this function performs a sweep of the B field of the chosen magnet coil. It creates a list o B values from the given min and max values, with the given resolution. For each value, a measurement of the spectrum of the probe in the cryostat is made, using the LightField spectrometer. Args: instr (pyvisa.resources.Resource): chosen power supply device to connect to min_bval (float): min B value of the scan (please input in units of Tesla) max_bval (float): max B value of the scan (please input in units of Tesla) res (float): resolution of the list of B values (please input in units of Tesla) magnet_coil (str): select magnet coil to be used. String should be 'x-axis','y-axis' or 'z-axis'. Settings (str): experiment settings, included in file name. base_file_name (str, optional): base file name. Defaults to ''. singlepowersupply_bool (bool, optional): _description_. Defaults to False. reversescan_bool (bool, optional): _description_. Defaults to False. zerowhenfin_bool (bool, optional): _description_. Defaults to False. Raises: ValueError: when By limit is exceeded. ValueError: when Bz limit is exceeded. ValueError: when Bx limit is exceeded. ConnectionError: when no device is connected. """ '''''' def pyramid_list(lst) -> Union[list, np.ndarray]: """reverses the list and removes the first element of reversed list. Then, this is appended to the end of the original list and returned as the 'pyramid' list. Args: lst (list or np.ndarray): Raises: TypeError: if the input object isn't a list or np.ndarray Returns: Union[list, np.ndarray]: the pyramid list """ '''''' if isinstance(lst, list): return lst + lst[-2::-1] elif isinstance(lst, np.ndarray): return np.append(lst, lst[-2::-1]) else: raise TypeError('Please input a list!') # defines the folder, in which the data from the spectrometer is temporarily stored in temp_folder_path = "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test" # if path_save =='': # path_save = datetime.datetime.now().strftime("%Y_%m_%d_%H%M_hrs_") if base_file_name =='': base_file_name = datetime.datetime.now().strftime('%Y_%m_%d_%H.%M') start_time = time.time() # start of the scan function instr_info = query_no_echo(instr, '*IDN?') instr_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element list of lists containing the set unit, llim and ulim if instr_bsettings[0][0] == 'T': instr_bsettings[1][0] = instr_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T instr_bsettings[2][0] = instr_bsettings[2][0]*0.1 # if singlepowersupply_bool: # checks limits of Bx or By # if (min_bval< -BY_MAX) or (max_bval > BY_MAX): # raise ValueError('Input limits exceed that of the magnet By! Please input smaller limits.') # elif '1' in query_no_echo(instr, 'CHAN?'): # check if its the coils for Bz # if (min_bval < -BZ_MAX) or (max_bval > BZ_MAX): # raise ValueError('Input limits exceed that of the magnet (Bz)! Please input smaller limits.') # else: # checks limits of Bx # if (min_bval< -BX_MAX) or (max_bval > BX_MAX): # raise ValueError('Input limits exceed that of the magnet Bx! Please input smaller limits.') if '2101014' in instr_info and (magnet_coil=='y-axis'): # single power supply if (min_bval< -BY_MAX) or (max_bval > BY_MAX): raise ValueError('Input limits exceed that of the magnet By! Please input smaller limits.') elif '2301034' in instr_info: # dual power supply if magnet_coil=='z-axis': # check if its the coils for Bz if (min_bval < -BZ_MAX) or (max_bval > BZ_MAX): raise ValueError('Input limits exceed that of the magnet (Bz)! Please input smaller limits.') write_no_echo(instr, 'CHAN 1') elif magnet_coil=='x-axis': # checks limits of Bx if (min_bval< -BX_MAX) or (max_bval > BX_MAX): raise ValueError('Input limits exceed that of the magnet Bx! Please input smaller limits.') write_no_echo(instr, 'CHAN 2') else: raise ConnectionError('Device is not connected!') write_no_echo(instr, f'LLIM {min_bval*10};ULIM {max_bval*10}') # sets the given limits, must convert to kG for the device to read bval_lst = np.arange(min_bval, max_bval + res, res) # creates list of B values to measure at, with given resolution, in T # TODO: unused, see if can remove # init_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # queries the initial B value of the coil, rescale from kG to T init_lim, subsequent_lim = 'LLIM', 'ULIM' init_sweep, subsequent_sweep = 'DOWN', 'UP' #################################################### # TODO: decide whether to start at min b val or max b val, depending on which one is nearer, IMPLEMENT THIS LATER # nearest_bval = (abs(init_bval - min_bval), abs(init_bval - max_bval)) # if nearest_bval[0] <= nearest_bval[1]: # reversescan_bool = True #################################################### # if reverse scan, then flip the values in the b list, and swap the initial limit and sweep conditions if reversescan_bool: bval_lst = bval_lst[::-1] init_lim, subsequent_lim = subsequent_lim, init_lim init_sweep, subsequent_sweep = subsequent_sweep, init_sweep # creates the pyramid list of B vals if one were to perform a hysteresis measurement if loopscan_bool: bval_lst = pyramid_list(bval_lst) total_points = len(bval_lst) middle_index_bval_lst = total_points // 2 intensity_data = [] # To store data from each scan cwd = os.getcwd() # save original directory # NOTE: helper function for the scanning loop def helper_scan_func(idx, bval, instr=instr, init_lim=init_lim, init_sweep=init_sweep, subsequent_lim=subsequent_lim, subsequent_sweep=subsequent_sweep, sleep=5): if idx == 0: # for first iteration, sweep to one of the limits write_no_echo(instr, f'{init_lim} {bval*10}') # convert back to kG write_no_echo(instr, f'SWEEP {init_sweep}') else: write_no_echo(instr, f'{subsequent_lim} {bval*10}') # convert back to kG write_no_echo(instr, f'SWEEP {subsequent_sweep}') actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # convert kG to T print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T') while abs(actual_bval - bval) > 0.0001: time.sleep(5) # little break actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # update the actual bval print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T') #scanning loop for i, bval in enumerate(bval_lst): # if init_bval == bval: # # if initial bval is equal to the element of the given iteration from the bval_lst, then commence measuring the spectrum # pass # else: # NOTE: original code without the loop scan ################################################ # if i == 0: # for first iteration, sweep to one of the limits # write_no_echo(instr, f'{init_lim} {bval*10}') # convert back to kG # write_no_echo(instr, f'SWEEP {init_sweep}') # else: # write_no_echo(instr, f'{subsequent_lim} {bval*10}') # convert back to kG # write_no_echo(instr, f'SWEEP {subsequent_sweep}') # actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # convert kG to T # print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T') # while abs(actual_bval - bval) > 0.0001: # time.sleep(5) # little break # actual_bval = sep_num_from_units(query_no_echo(instr, 'IMAG?'))[0]*0.1 # # update the actual bval # print(f'Actual magnet strength: {actual_bval} T,', f'Target magnet strength: {bval} T') ############################################### if not loopscan_bool: helper_scan_func(i, bval) else: if i <= middle_index_bval_lst: helper_scan_func(i, bval) else: helper_scan_func(i, bval, instr=instr, init_lim=subsequent_lim, init_sweep=subsequent_sweep, subsequent_lim=init_lim, subsequent_sweep=init_sweep, sleep=5) time.sleep(5) # we acquire with the LF acquire_name_spe = f'{base_file_name}_{bval}T' AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name. # read the .spe file and get the data as loaded_files cwd = os.getcwd() # save original directory os.chdir(temp_folder_path) #change directory loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable os.chdir(cwd) # go back to original directory # Delete the created .spe file from acquiring after getting necessary info spe_file_path = os.path.join(temp_folder_path, acquire_name_spe + '.spe') os.remove(spe_file_path) points_left = total_points - i - 1 # TODO: SEE IF THIS IS CORRECT print('Points left in the scan: ', points_left) #append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins) intensity_data.append(loaded_files.data[0][0][0]) #prints total time the mapping lasted end_time = time.time() elapsed_time = (end_time - start_time) / 60 print('Scan time: ', elapsed_time, 'minutes') write_no_echo(instr, f'LLIM {instr_bsettings[1][0]*10};ULIM {instr_bsettings[2][0]*10}') # reset the initial limits of the device after the scan if zerowhenfin_bool: write_no_echo(instr, 'SWEEP ZERO') # if switched on, discharges the magnet after performing the measurement loop above #save intensity & WL data as .txt os.chdir('C:/Users/localadmin/Desktop/Users/Lukas') # creates new folder for MAP data new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}" os.mkdir(new_folder_name) # Here the things will be saved in a new folder under user Lukas ! # IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!! os.chdir('C:/Users/localadmin/Desktop/Users/Lukas/'+ new_folder_name) intensity_data = np.array(intensity_data) np.savetxt(Settings + str(min_bval) + 'T_to_' + str(max_bval) + 'T' + experiment_name +'.txt', intensity_data) wl = np.array(loaded_files.wavelength) np.savetxt("Wavelength.txt", wl) def polar_to_cartesian(radius, start_angle, end_angle, step_size, clockwise=True): # TODO: DOCS """Creates a list of discrete cartesian coordinates (x,y), given the radius, start- and end angles, the angle step size, and the direction of rotation. Function then returns a list of two lists: list of angles and list of cartesian coordinates (x,y coordinates in a tuple). Args: radius (_type_): _description_ start_angle (_type_): _description_ end_angle (_type_): _description_ step_size (_type_): _description_ clockwise (bool, optional): _description_. Defaults to True. Returns: _type_: _description_ """ """""" # Initialize lists to hold angles and (x, y) pairs angles = [] coordinates = [] # Normalize angles to the range [0, 360) start_angle = start_angle % 360 end_angle = end_angle % 360 if clockwise: # Clockwise rotation current_angle = start_angle while True: # Append the current angle to the angles list angles.append(current_angle % 360) # Convert the current angle to radians current_angle_rad = math.radians(current_angle % 360) # Convert polar to Cartesian coordinates x = radius * math.cos(current_angle_rad) y = radius * math.sin(current_angle_rad) # Append the (x, y) pair to the list coordinates.append((x, y)) # Check if we've reached the end_angle (handling wrap-around) (current_angle - step_size) % 360 == end_angle or if current_angle % 360 == end_angle: break # Decrement the current angle by the step size current_angle -= step_size if current_angle < 0: current_angle += 360 else: # Counterclockwise rotation current_angle = start_angle while True: # Append the current angle to the angles list angles.append(current_angle % 360) # Convert the current angle to radians current_angle_rad = math.radians(current_angle % 360) # Convert polar to Cartesian coordinates x = radius * math.cos(current_angle_rad) y = radius * math.sin(current_angle_rad) # Append the (x, y) pair to the list coordinates.append((x, y)) # Check if we've reached the end_angle (handling wrap-around) (current_angle + step_size) % 360 == end_angle or if current_angle % 360 == end_angle: break # Increment the current angle by the step size current_angle += step_size if current_angle >= 360: current_angle -= 360 return [angles, coordinates] def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.Resource, Babs:float, startangle:float, endangle:float, angle_stepsize:float, Settings:str, clockwise=True, base_file_name='', zerowhenfin_bool=False)->None: # TODO: update docs """Rotation of the b-field in discrete steps, spectrum is measured at each discrete step in the rotation. Scan angle is defined as the angle between the x-axis and the current B-field vector, i.e., in the anticlockwise direction. Args: instr1 (pyvisa.resources.Resource): _description_ instr2 (pyvisa.resources.Resource): _description_ Babs (float): absolute B-field value in T startangle (float): start angle in degrees endangle (float): end angle in degrees angle_stepsize (float): angle step size in degrees clockwise (bool): determines the direction of rotation of the B-field. Defaults to True. zerowhenfin_bool (bool, optional): after finishing the rotation, both B-field components should be set to 0 T. Defaults to False. """ # TODO: possibly rename instr1 and instr2 to the dual and single power supplies respectively?? # defines the folder, in which the data from the spectrometer is temporarily stored in temp_folder_path = "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test" if base_file_name =='': base_file_name = datetime.datetime.now().strftime('%Y_%m_%d_%H.%M') start_time = time.time() # start of the scan function startangle = startangle % 360 endangle = endangle % 360 # ensures that the angles are within [0,360) idnstr1 = query_no_echo(instr1, '*IDN?') idnstr2 = query_no_echo(instr1, '*IDN?') intensity_data = [] # To store data from each scan cwd = os.getcwd() # save original directory # find which one is the dual power supply, then, ramp B_x to Babs value if '2301034' in idnstr1: # serial no. the dual power supply pass elif '2101034' in idnstr2: # swap instruments, instr 1 to be the dual power supply (^= x-axis) instr1, instr2 = instr2, instr1 # save initial low and high sweep limits of each device, and set them back after the rotation instr1_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr1, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element tuple of tuples containing the set unit, llim and ulim instr2_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr2, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element tuple of tuples containing the set unit, llim and ulim if instr1_bsettings[0][0] == 'T': instr1_bsettings[1][0] = instr1_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T instr1_bsettings[2][0] = instr1_bsettings[2][0]*0.1 if instr2_bsettings[0][0] == 'T': instr2_bsettings[1][0] = instr2_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T instr2_bsettings[2][0] = instr2_bsettings[2][0]*0.1 # initialise the sweep angle list as well as the sweep limits and directions for each instrument instr1_lim, instr2_lim = 'LLIM', 'ULIM' instr1_sweep, instr2_sweep = 'DOWN', 'UP' # create lists of angles and discrete Cartesian coordinates angles, cartesian_coords = polar_to_cartesian(Babs, startangle, endangle, angle_stepsize, clockwise=clockwise) if clockwise: # NOTE: old conditional was: startangle > endangle see if this works.... # reverse sweep limits and directions for the clockwise rotation instr1_lim, instr2_lim = instr2_lim, instr1_lim instr1_sweep, instr2_sweep = instr2_sweep, instr1_sweep # list of rates (with units) for diff ranges of each device, only up to Range 1 for single power supply as that is already # the max recommended current. init_range_lst1 = list(sep_num_from_units(el) for el in query_no_echo(instr1, 'RATE? 0;RATE? 1;RATE? 2').split(';')) init_range_lst2 = list(sep_num_from_units(el) for el in query_no_echo(instr2, 'RATE? 0;RATE? 1').split(';')) min_range_lst = [min(el1[0], el2[0]) for el1,el2 in zip(init_range_lst1, init_range_lst2)] # min rates for each given range # set both devices to the min rates write_no_echo(instr1, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}') write_no_echo(instr2, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}') write_no_echo(instr1, f'CHAN 2;ULIM {Babs*10};SWEEP UP') # sets to B_x, the B_x upper limit and sweeps the magnet field to the upper limit print(f'SWEEPING B-X TO {Babs} T NOW') # wait for Babs to be reached by the Bx field actual_bval = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1 # convert kG to T print(f'Actual magnet strength (Bx): {actual_bval} T,', f'Target magnet strength: {Babs} T') while abs(actual_bval - Babs) > 0.0001: time.sleep(5) # little break actual_bval = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1 print(f'Actual magnet strength (Bx): {actual_bval} T,', f'Target magnet strength: {Babs} T') # NOTE: implement PID control, possibly best option to manage the b field DO THIS LATER ON, WE DO DISCRETE B VALUES RN # Helper function that listens to a device def listen_to_device(device_id, target_value, shared_values, lock, all_targets_met_event): while not all_targets_met_event.is_set(): # Loop until the event is set # value = 0 # Simulate receiving a float from the device INSERT QUERY NO ECHO HERE TO ASK FOR DEVICE IMAG if '2301034' in device_id: value = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1 # convert kG to T elif '2101014' in device_id: value = sep_num_from_units(query_no_echo(instr2, 'IMAG?'))[0]*0.1 # convert kG to T print(f"Device {device_id} reports value: {value} T") with lock: shared_values[device_id] = value # Check if both devices have met their targets if all(shared_values.get(device) is not None and abs(shared_values[device] - target_value[device]) <= 0.0001 for device in shared_values): print(f"Both devices reached their target values: {shared_values}") all_targets_met_event.set() # Signal that both targets are met # time.sleep(1) # Simulate periodic data checking # Main function to manage threads and iterate over target values def monitor_devices(device_target_values, angles_lst, intensity_data=intensity_data): for iteration, target in enumerate(device_target_values): print(f"\nStarting iteration {iteration+1} for target values: {target}") # Shared dictionary to store values from devices shared_values = {device: None for device in target.keys()} # Event to signal when both target values are reached all_targets_met_event = threading.Event() # Lock to synchronize access to shared_values lock = threading.Lock() # Create and start threads for each device threads = [] for device_id in target.keys(): thread = threading.Thread(target=listen_to_device, args=(device_id, target, shared_values, lock, all_targets_met_event)) threads.append(thread) thread.start() # Wait until both devices meet their target values all_targets_met_event.wait() print(f"Both target values for iteration {iteration+1} met. Performing action...") # Perform some action after both targets are met # we acquire with the LF acquire_name_spe = f'{base_file_name}_{angles_lst[iteration]}°' # NOTE: save each intensity file with the given angle AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name. # read the .spe file and get the data as loaded_files cwd = os.getcwd() # save original directory os.chdir(temp_folder_path) #change directory loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable os.chdir(cwd) # go back to original directory # Delete the created .spe file from acquiring after getting necessary info spe_file_path = os.path.join(temp_folder_path, acquire_name_spe + '.spe') os.remove(spe_file_path) # points_left = total_points - i - 1 # TODO: SEE IF THIS IS CORRECT # print('Points left in the scan: ', points_left) #append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins) intensity_data.append(loaded_files.data[0][0][0]) # Clean up threads for thread in threads: thread.join() print(f"Threads for iteration {iteration+1} closed.\n") #prints total time the mapping lasted end_time = time.time() elapsed_time = (end_time - start_time) / 60 print('Scan time: ', elapsed_time, 'minutes') # reset both devices to original sweep limits write_no_echo(instr1, f'LLIM {instr1_bsettings[1][0]*10};ULIM {instr1_bsettings[2][0]*10}') # reset the initial limits of the device after the scan write_no_echo(instr2, f'LLIM {instr2_bsettings[1][0]*10};ULIM {instr2_bsettings[2][0]*10}') # reset the initial limits of the device after the scan # reset both devices' initial rates for each range write_no_echo(instr1, f'RANGE 0 {init_range_lst1[0][0]};RANGE 1 {init_range_lst1[1][0]};RANGE 2 {init_range_lst1[2][0]}') # reset the initial limits of the device after the scan write_no_echo(instr2, f'RANGE 0 {init_range_lst2[0][0]};RANGE 1 {init_range_lst2[1][0]}') # reset the initial limits of the device after the scan if zerowhenfin_bool: write_no_echo(instr1, 'SWEEP ZERO') # if switched on, discharges the magnet after performing the measurement loop above write_no_echo(instr2, 'SWEEP ZERO') #save intensity & WL data as .txt os.chdir('C:/Users/localadmin/Desktop/Users/Lukas') # creates new folder for MAP data new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}" os.mkdir(new_folder_name) # Here the things will be saved in a new folder under user Lukas ! # IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!! os.chdir('C:/Users/localadmin/Desktop/Users/Lukas/'+ new_folder_name) intensity_data = np.array(intensity_data) np.savetxt(Settings + f'{angles[0]}°_to_{angles[-1]}°' + experiment_name +'.txt', intensity_data) # TODO: remove/edit experiment_name in line above, as well in sweep_b_val func, rn takes a global variable below wl = np.array(loaded_files.wavelength) np.savetxt("Wavelength.txt", wl) # modify cartesian_coords to suite the required data struct in monitor_devices cartesian_coords = [{'2301034': t[0], '2101014': t[1]} for t in cartesian_coords] # call the helper function to carry out the rotation/measurement of spectrum monitor_devices(cartesian_coords, angles, intensity_data) ################################################################# END OF FUNCTION DEFS ########################################################################################### # NOTE: RYAN INTRODUCED SOME FUNCTIONS HERE TO PERFORM THE SCAN # Initialise PYVISA ResourceManager rm = pyvisa.ResourceManager() # print(rm.list_resources()) # 'ASRL8::INSTR' for dual power supply, 'ASRL9::INSTR' for single power supply (online PC) # 'ASRL10::INSTR' for dual power supply, 'ASRL12::INSTR' for single power supply (offline PC) # Open the connection with the APS100 dual power supply powerbox_dualsupply = rm.open_resource('ASRL10::INSTR', baud_rate=9600, data_bits=8, parity= pyvisa.constants.Parity.none, stop_bits= pyvisa.constants.StopBits.one, timeout=100)# 5000 ms timeout # Open the connection with the APS100 dual power supply powerbox_singlesupply = rm.open_resource('ASRL12::INSTR', baud_rate=9600, data_bits=8, parity= pyvisa.constants.Parity.none, stop_bits= pyvisa.constants.StopBits.one, timeout=100)# 5000 ms timeout write_no_echo(powerbox_dualsupply, 'REMOTE') # turn on the remote mode write_no_echo(powerbox_singlesupply, 'REMOTE') # turn on the remote mode # TODO: test functionality of the magnet_coil param later on, should work... as this code below is basically implemented inside the scan func. # select axis for the dual supply, either z-axis(CHAN 1 ^= Supply A) or x-axis(CHAN 2 ^= Supply B) # write_no_echo(powerbox_dualsupply, 'CHAN 1') # Setup connection to AMC amc = AMC.Device(IP) amc.connect() # Internally, axes are numbered 0 to 2 amc.control.setControlOutput(0, True) amc.control.setControlOutput(1, True) auto = Automation(True, List[String]()) experiment = auto.LightFieldApplication.Experiment acquireCompleted = AutoResetEvent(False) experiment.Load("Lukas_experiment_2024_02_06") experiment.ExperimentCompleted += experiment_completed # we are hooking a listener. # experiment.SetValue(SpectrometerSettings.GratingSelected, '[750nm,1200][0][0]') # InitializerFilenameParams() #set scan range and resolution in nanometers range_x = 20000 range_y = 20000 resolution = 1000 # set B-field scan range and resolution (all in T) set_llim_bval = -0.01 set_ulim_bval = 0.01 set_res_bval = 0.01 #Here you can specify the filename of the map e.g. put experiment type, exposure time, used filters, etc.... experiment_settings = 'PL_SP_700_LP_700_HeNe_52muW_exp_2s_Start_' #The program adds the range of the scan as well as the resolution and the date and time of the measurement experiment_name = f"{set_llim_bval}T_to_{set_ulim_bval}T_{set_res_bval}T_{datetime.datetime.now().strftime('%Y_%m_%d_%H%M')}" # this moves the probe in xy-direction and measures spectrum there # move_scan_xy(range_x, range_y, resolution, experiment_settings, experiment_name) # perform the B-field measurement for selected axis above # sweep_b_val(powerbox_dualsupply, set_llim_bval, set_ulim_bval, set_res_bval, experiment_settings, experiment_name) sweep_b_val(powerbox_dualsupply, set_llim_bval, set_ulim_bval, set_res_bval, 'z-axis', experiment_settings, experiment_name, zerowhenfin_bool=True, reversescan_bool=False) # Internally, axes are numbered 0 to 2 write_no_echo(powerbox_dualsupply, 'LOCAL') # turn off the remote mode write_no_echo(powerbox_singlesupply, 'LOCAL') # turn off the remote mode # time.sleep(0.5) powerbox_dualsupply.close() powerbox_singlesupply.close()