import math def polar_to_cartesian(radius, start_angle, end_angle, step_size, clockwise=True): # TODO: DOCS """Creates a list of discrete cartesian coordinates (x,y), given the radius, start- and end angles, the angle step size, and the direction of rotation. Function then returns a list of two lists: list of angles and list of cartesian coordinates (x,y coordinates in a tuple). Args: radius (_type_): _description_ start_angle (_type_): _description_ end_angle (_type_): _description_ step_size (_type_): _description_ clockwise (bool, optional): _description_. Defaults to True. Returns: _type_: _description_ """ """""" # Initialize lists to hold angles and (x, y) pairs angles = [] coordinates = [] # Normalize angles to the range [0, 360) start_angle = start_angle % 360 end_angle = end_angle % 360 if clockwise: # Clockwise rotation current_angle = start_angle while True: # Append the current angle to the angles list angles.append(current_angle % 360) # Convert the current angle to radians current_angle_rad = math.radians(current_angle % 360) # Convert polar to Cartesian coordinates x = radius * math.cos(current_angle_rad) y = radius * math.sin(current_angle_rad) # Append the (x, y) pair to the list coordinates.append((x, y)) # Check if we've reached the end_angle (handling wrap-around) (current_angle - step_size) % 360 == end_angle or if current_angle % 360 == end_angle: break # Decrement the current angle by the step size current_angle -= step_size if current_angle < 0: current_angle += 360 else: # Counterclockwise rotation current_angle = start_angle while True: # Append the current angle to the angles list angles.append(current_angle % 360) # Convert the current angle to radians current_angle_rad = math.radians(current_angle % 360) # Convert polar to Cartesian coordinates x = radius * math.cos(current_angle_rad) y = radius * math.sin(current_angle_rad) # Append the (x, y) pair to the list coordinates.append((x, y)) # Check if we've reached the end_angle (handling wrap-around) (current_angle + step_size) % 360 == end_angle or if current_angle % 360 == end_angle: break # Increment the current angle by the step size current_angle += step_size if current_angle >= 360: current_angle -= 360 return [angles, coordinates] if __name__=="__main__": # Example usage radius = 5 start_angle = 0 end_angle = 0 step_size = 10 angles, coordinates = polar_to_cartesian(radius, start_angle, end_angle, step_size, clockwise=True) print('\n', "Angles:", angles, '\n') print("Coordinates:", coordinates, '\n',)