519 lines
24 KiB
Python
519 lines
24 KiB
Python
############################################
|
|
# Packages from Ryan
|
|
import re
|
|
import math
|
|
import threading
|
|
import pyvisa
|
|
# from pyvisa import ResourceManager, constants
|
|
|
|
# B Field Limits (in T)
|
|
BX_MAX = 1.7
|
|
BY_MAX = 1.7
|
|
BZ_MAX = 4.0
|
|
############################################
|
|
|
|
# import AMC
|
|
import csv
|
|
import time
|
|
import clr
|
|
import sys
|
|
import os
|
|
import spe2py as spe
|
|
import spe_loader as sl
|
|
import pandas as pd
|
|
import time
|
|
# from System.IO import *
|
|
# from System import String
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import datetime
|
|
from typing import Union
|
|
|
|
def sep_num_from_units(powerbox_output :str)->list:
|
|
'''
|
|
Receives a string as input and separates the numberic value and unit and returns it as a list.
|
|
|
|
Parameters
|
|
----------
|
|
powerbox_output : str
|
|
string output from the attocube powerbox, e.g. 1.35325kG
|
|
|
|
Returns
|
|
-------
|
|
list
|
|
list of float value and string (b value and it's units). If string is purely alphabets, then return a single element list
|
|
|
|
'''
|
|
match = re.match(r'\s*([+-]?\d*\.?\d+)([A-Za-z]+)', powerbox_output)
|
|
if match:
|
|
numeric_part = float(match.group(1)) # Convert the numeric part to a float
|
|
alphabetic_part = match.group(2) # Get the alphabetic part
|
|
return [numeric_part, alphabetic_part]
|
|
else:
|
|
return [powerbox_output,]
|
|
|
|
|
|
def query_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str:
|
|
"""helper function for the Attocube APS100 that queries a function to the device, removing the echo.
|
|
|
|
Args:
|
|
instr (pyvisa.resources.Resource):
|
|
command (str): commands, can be stringed in series with ; between commands
|
|
sleeptime (float, optional): delay time between commands. Defaults to 0.01.
|
|
|
|
Returns:
|
|
str: _description_
|
|
""" ''''''
|
|
try:
|
|
print(f"Sending command: {command}")
|
|
instr.write(command)
|
|
time.sleep(sleeptime)
|
|
echo_response = instr.read() # Read and discard the echo
|
|
# print(f"Echo response: {echo_response}")
|
|
actual_response = instr.read() # Read the actual response
|
|
print(f"Actual response: {actual_response}")
|
|
return actual_response
|
|
except pyvisa.VisaIOError as e:
|
|
print(f"Error communicating with instrument: {e}")
|
|
return None
|
|
|
|
|
|
def write_no_echo(instr:pyvisa.resources.Resource, command:str, sleeptime=0)->str:
|
|
"""helper function for the Attocube APS100 that writes a function to the device, removing the echo.
|
|
|
|
Args:
|
|
instr (pyvisa.resources.Resource):
|
|
command (str): commands, can be stringed in series with ; between commands
|
|
sleeptime (float, optional): delay time between commands. Defaults to 0.01.
|
|
|
|
Returns:
|
|
str: _description_
|
|
""" ''''''
|
|
try:
|
|
print(f"Sending command: {command}")
|
|
instr.write(command)
|
|
time.sleep(sleeptime) # Give the device some time to process
|
|
try:
|
|
while True:
|
|
echo_response = instr.read() # Read and discard the echo
|
|
# print(f"Echo response: {echo_response}")
|
|
except pyvisa.VisaIOError as e:
|
|
# Expected timeout after all echoed responses are read
|
|
if e.error_code != pyvisa.constants.VI_ERROR_TMO:
|
|
raise
|
|
except pyvisa.VisaIOError as e:
|
|
print(f"Error communicating with instrument: {e}")
|
|
|
|
|
|
def generate_angle_coord_list(radius, start_angle, end_angle, step_size, clockwise=True):
|
|
# TODO: DOCS
|
|
"""Creates a list of discrete cartesian coordinates (x,y), given the radius, start- and end angles, the angle step size, and the direction of rotation.
|
|
Function then returns a list of two lists: list of angles and list of cartesian coordinates (x,y coordinates in a tuple).
|
|
|
|
Args:
|
|
radius (_type_): _description_
|
|
start_angle (_type_): _description_
|
|
end_angle (_type_): _description_
|
|
step_size (_type_): _description_
|
|
clockwise (bool, optional): _description_. Defaults to True.
|
|
|
|
Returns:
|
|
_type_: _description_
|
|
""" """"""
|
|
# Initialize lists to hold angles and (x, y) pairs
|
|
angles = []
|
|
coordinates = []
|
|
|
|
# Normalize angles to the range [0, 360)
|
|
start_angle = start_angle % 360
|
|
end_angle = end_angle % 360
|
|
|
|
if not clockwise:
|
|
# Clockwise rotation
|
|
current_angle = start_angle
|
|
while True:
|
|
# Append the current angle to the angles list
|
|
angles.append(current_angle % 360)
|
|
|
|
# Convert the current angle to radians
|
|
current_angle_rad = math.radians(current_angle % 360)
|
|
|
|
# Convert polar to Cartesian coordinates
|
|
x = radius * math.cos(current_angle_rad)
|
|
y = radius * math.sin(current_angle_rad)
|
|
|
|
# Append the (x, y) pair to the list
|
|
coordinates.append((x, y))
|
|
|
|
# Check if we've reached the end_angle (handling wrap-around) (current_angle - step_size) % 360 == end_angle or
|
|
if current_angle % 360 == end_angle:
|
|
break
|
|
|
|
# Decrement the current angle by the step size
|
|
current_angle -= step_size
|
|
if current_angle < 0:
|
|
current_angle += 360
|
|
else:
|
|
# Counterclockwise rotation
|
|
current_angle = start_angle
|
|
while True:
|
|
# Append the current angle to the angles list
|
|
angles.append(current_angle % 360)
|
|
|
|
# Convert the current angle to radians
|
|
current_angle_rad = math.radians(current_angle % 360)
|
|
|
|
# Convert polar to Cartesian coordinates
|
|
x = radius * math.cos(current_angle_rad)
|
|
y = radius * math.sin(current_angle_rad)
|
|
|
|
# Append the (x, y) pair to the list
|
|
coordinates.append((x, y))
|
|
|
|
# Check if we've reached the end_angle (handling wrap-around) (current_angle + step_size) % 360 == end_angle or
|
|
if current_angle % 360 == end_angle:
|
|
break
|
|
|
|
# Increment the current angle by the step size
|
|
current_angle += step_size
|
|
if current_angle >= 360:
|
|
current_angle -= 360
|
|
|
|
return [angles, coordinates]
|
|
|
|
def b_field_rotation(instr1:pyvisa.resources.Resource, instr2:pyvisa.resources.Resource,
|
|
Babs:float, startangle:float, endangle:float, angle_stepsize:float,
|
|
Settings:str, clockwise=True, base_file_name='', zerowhenfin_bool=False)->None:
|
|
# TODO: update docs
|
|
"""Rotation of the b-field in discrete steps, spectrum is measured at each discrete step in the rotation. Scan angle is
|
|
defined as the angle between the x-axis and the current B-field vector, i.e., in the anticlockwise direction.
|
|
|
|
Args:
|
|
instr1 (pyvisa.resources.Resource): _description_
|
|
instr2 (pyvisa.resources.Resource): _description_
|
|
Babs (float): absolute B-field value in T
|
|
startangle (float): start angle in degrees
|
|
endangle (float): end angle in degrees
|
|
angle_stepsize (float): angle step size in degrees
|
|
clockwise (bool): determines the direction of rotation of the B-field. Defaults to True.
|
|
zerowhenfin_bool (bool, optional): after finishing the rotation, both B-field components should be set to 0 T. Defaults to False.
|
|
"""
|
|
|
|
# TODO: add logging to the script
|
|
|
|
# defines the folder, in which the data from the spectrometer is temporarily stored in
|
|
temp_folder_path = "C:/Users/localadmin/Desktop/Users/Lukas/B_Field_Dump"
|
|
# temp_folder_path = "C:/Users/localadmin/Desktop/Users/Lukas/2024_02_08_Map_test"
|
|
|
|
if base_file_name =='':
|
|
base_file_name = datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')
|
|
|
|
start_time = time.time() # start of the scan function
|
|
|
|
startangle = startangle % 360
|
|
endangle = endangle % 360 # ensures that the angles are within [0,360)
|
|
|
|
idnstr1 = query_no_echo(instr1, '*IDN?')
|
|
idnstr2 = query_no_echo(instr2, '*IDN?')
|
|
|
|
intensity_data = [] # To store data from each scan
|
|
cwd = os.getcwd() # save original directory
|
|
|
|
# find which one is the dual power supply, then, ramp B_x to Babs value
|
|
if '2301034' in idnstr1: # serial no. the dual power supply
|
|
pass
|
|
elif '2101034' in idnstr2:
|
|
# swap instruments, instr 1 to be the dual power supply (^= x-axis)
|
|
instr1, instr2 = instr2, instr1
|
|
|
|
# save initial low and high sweep limits of each device, and set them back after the rotation
|
|
instr1_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr1, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element tuple of tuples containing the set unit, llim and ulim
|
|
instr2_bsettings = list(sep_num_from_units(el) for el in query_no_echo(instr2, 'UNITS?;LLIM?;ULIM?').split(';')) # deliver a 3 element tuple of tuples containing the set unit, llim and ulim
|
|
if instr1_bsettings[0][0] == 'T':
|
|
instr1_bsettings[1][0] = instr1_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T
|
|
instr1_bsettings[2][0] = instr1_bsettings[2][0]*0.1
|
|
if instr2_bsettings[0][0] == 'T':
|
|
instr2_bsettings[1][0] = instr2_bsettings[1][0]*0.1 # rescale kG to T, device accepts values only in kG or A, eventho we set it to T
|
|
instr2_bsettings[2][0] = instr2_bsettings[2][0]*0.1
|
|
|
|
# initialise the sweep angle list as well as the sweep limits and directions for each instrument
|
|
instr1_lim, instr2_lim = 'LLIM', 'ULIM'
|
|
instr1_sweep, instr2_sweep = 'DOWN', 'UP'
|
|
|
|
# create lists of angles and discrete Cartesian coordinates
|
|
angles, cartesian_coords = generate_angle_coord_list(Babs, startangle, endangle, angle_stepsize, clockwise=clockwise)
|
|
|
|
if clockwise: # NOTE: old conditional was: startangle > endangle see if this works....
|
|
# reverse sweep limits and directions for the clockwise rotation
|
|
instr1_lim, instr2_lim = instr2_lim, instr1_lim
|
|
instr1_sweep, instr2_sweep = instr2_sweep, instr1_sweep
|
|
|
|
|
|
# TODO: i dont think we need to change the rates just yet, think about this later
|
|
'''
|
|
# list of rates (with units) for diff ranges of each device, only up to Range 1 for single power supply as that is already
|
|
# the max recommended current.
|
|
init_range_lst1 = list(sep_num_from_units(el) for el in query_no_echo(instr1, 'RATE? 0;RATE? 1;RATE? 2').split(';'))
|
|
init_range_lst2 = list(sep_num_from_units(el) for el in query_no_echo(instr2, 'RATE? 0;RATE? 1').split(';'))
|
|
|
|
min_range_lst = [min(el1[0], el2[0]) for el1,el2 in zip(init_range_lst1, init_range_lst2)] # min rates for each given range
|
|
|
|
# set both devices to the min rates
|
|
write_no_echo(instr1, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}')
|
|
write_no_echo(instr2, f'RATE 0 {min_range_lst[0]};RATE 1 {min_range_lst[1]}')
|
|
'''
|
|
|
|
|
|
# TODO: see if this is the desired process: to always start from the x-axis ASK LUKAS
|
|
if Babs <= BX_MAX:
|
|
# write_no_echo(instr1, f'CHAN 2;ULIM {Babs*10};SWEEP UP') # sets to B_x, the B_x upper limit and sweeps the magnet field to the upper limit
|
|
print(f'SWITCHED TO BX, SWEEPING B-X TO {Babs} T NOW')
|
|
else:
|
|
raise ValueError(f'{Babs=}T value exceeds the max limit of the Bx field {BX_MAX}T!')
|
|
|
|
# wait for Babs to be reached by the Bx field
|
|
actual_bval = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1 # convert kG to T
|
|
print(f'Actual magnet strength (Bx): {actual_bval} T,', f'Target magnet strength: {Babs} T')
|
|
while abs(actual_bval - Babs) > 0.0001:
|
|
time.sleep(5) # little break
|
|
actual_bval = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1
|
|
print(f'Actual magnet strength (Bx): {actual_bval} T,', f'Target magnet strength: {Babs} T')
|
|
|
|
|
|
|
|
# TODO: copy and mod code to see if block logic works, test in lab
|
|
# NOTE: implement PID control, possibly best option to manage the b field DO THIS LATER ON, WE DO DISCRETE B VALUES RN
|
|
# Helper function that listens to a device
|
|
def listen_to_device(device_id, target_value, shared_values, lock, all_targets_met_event):
|
|
while not all_targets_met_event.is_set(): # Loop until the event is set
|
|
# value = 0 # Simulate receiving a float from the device INSERT QUERY NO ECHO HERE TO ASK FOR DEVICE IMAG
|
|
if '2301034' in device_id:
|
|
value = sep_num_from_units(query_no_echo(instr1, 'IMAG?'))[0]*0.1 # convert kG to T
|
|
if value <= target_value[device_id]:
|
|
# write_no_echo(instr1, f"CHAN 2;ULIM {target_value[device_id]*10};SWEEP UP")
|
|
print(f'sweeping Bx up to {target_value[device_id]*10}')
|
|
else:
|
|
# write_no_echo(instr1, "CHAN 2;LLIM {target_value[device_id]*10};SWEEP DOWN")
|
|
print(f'sweeping Bx down to {target_value[device_id]*10}')
|
|
|
|
elif '2101014' in device_id:
|
|
value = sep_num_from_units(query_no_echo(instr2, 'IMAG?'))[0]*0.1 # convert kG to T
|
|
if value <= target_value[device_id]:
|
|
# write_no_echo(instr2, f"ULIM {target_value[device_id]*10};SWEEP UP")
|
|
print(f'sweeping By up to {target_value[device_id]*10}')
|
|
else:
|
|
# write_no_echo(instr2, "LLIM {target_value[device_id]*10};SWEEP DOWN")
|
|
print(f'sweeping By down to {target_value[device_id]*10}')
|
|
else:
|
|
continue # Skip if device ID is not recognized
|
|
print(f"Device {device_id} reports value: {value} T")
|
|
|
|
with lock:
|
|
shared_values[device_id] = value
|
|
# Check if both devices have met their targets
|
|
if all(shared_values.get(device) is not None and abs(value - target_value[device]) <= 0.0001
|
|
for device,value in shared_values.items()):
|
|
print(f"Both devices reached their target values: {shared_values}")
|
|
all_targets_met_event.set() # Signal that both targets are met
|
|
|
|
# time.sleep(1) # Simulate periodic data checking
|
|
|
|
# Main function to manage threads and iterate over target values
|
|
def monitor_devices(device_target_values, angles_lst, intensity_data=intensity_data):
|
|
for iteration, target in enumerate(device_target_values):
|
|
print(f"\nStarting iteration {iteration+1} for target values: {target}")
|
|
# Shared dictionary to store values from devices
|
|
shared_values = {device: None for device in target.keys()}
|
|
# Event to signal when both target values are reached
|
|
all_targets_met_event = threading.Event()
|
|
|
|
# Lock to synchronize access to shared_values
|
|
lock = threading.Lock()
|
|
|
|
# Create and start threads for each device
|
|
threads = []
|
|
for device_id in target.keys():
|
|
thread = threading.Thread(target=listen_to_device, args=(device_id, target, shared_values, lock, all_targets_met_event))
|
|
threads.append(thread)
|
|
thread.start()
|
|
print(f"======================\nThread started for device {device_id}\n======================")
|
|
|
|
# Wait until both devices meet their target values
|
|
all_targets_met_event.wait()
|
|
print(f"Both target values for iteration {iteration+1} met. Performing action...")
|
|
# Clean up threads
|
|
for thread in threads:
|
|
thread.join()
|
|
print(f"Threads for iteration {iteration+1} closed.\n")
|
|
|
|
|
|
print(f'COLLECTING SPECTRUM FOR ANGLE {angles_lst[iteration]}°\n')
|
|
# Perform some action after both targets are met
|
|
# we acquire with the LF
|
|
# acquire_name_spe = f'{base_file_name}_{angles_lst[iteration]}°' # NOTE: save each intensity file with the given angle
|
|
# AcquireAndLock(acquire_name_spe) #this creates a .spe file with the scan name.
|
|
|
|
# read the .spe file and get the data as loaded_files
|
|
# cwd = os.getcwd() # save original directory
|
|
# os.chdir(temp_folder_path) #change directory
|
|
# loaded_files = sl.load_from_files([acquire_name_spe + '.spe']) # get the .spe file as a variable
|
|
# os.chdir(cwd) # go back to original directory
|
|
|
|
# Delete the created .spe file from acquiring after getting necessary info
|
|
# spe_file_path = os.path.join(temp_folder_path, acquire_name_spe + '.spe')
|
|
# os.remove(spe_file_path)
|
|
|
|
points_left = len(angles) - iteration - 1
|
|
|
|
print('Points left in the scan: ', points_left)
|
|
|
|
#append the intensity data as it is (so after every #of_wl_points, the spectrum of the next point begins)
|
|
# intensity_data.append(loaded_files.data[0][0][0])
|
|
|
|
#prints total time the mapping lasted
|
|
end_time = time.time()
|
|
elapsed_time = (end_time - start_time) / 60
|
|
print('Scan time: ', elapsed_time, 'minutes')
|
|
|
|
# reset both devices to original sweep limits
|
|
write_no_echo(instr1, f'LLIM {instr1_bsettings[1][0]*10};ULIM {instr1_bsettings[2][0]*10}') # reset the initial limits of the device after the scan
|
|
write_no_echo(instr2, f'LLIM {instr2_bsettings[1][0]*10};ULIM {instr2_bsettings[2][0]*10}') # reset the initial limits of the device after the scan
|
|
|
|
|
|
# TODO: uncomment later if resetting original rates implemented
|
|
'''
|
|
# reset both devices' initial rates for each range
|
|
write_no_echo(instr1, f'RANGE 0 {init_range_lst1[0][0]};RANGE 1 {init_range_lst1[1][0]};RANGE 2 {init_range_lst1[2][0]}') # reset the initial limits of the device after the scan
|
|
write_no_echo(instr2, f'RANGE 0 {init_range_lst2[0][0]};RANGE 1 {init_range_lst2[1][0]}') # reset the initial limits of the device after the scan
|
|
'''
|
|
|
|
|
|
if zerowhenfin_bool:
|
|
# write_no_echo(instr1, 'SWEEP ZERO') # if switched on, discharges the magnet after performing the measurement loop above
|
|
# write_no_echo(instr2, 'SWEEP ZERO')
|
|
print('======================\nSWEEPING BOTH DEVICES TO ZERO NOW\n======================')
|
|
|
|
#save intensity & WL data as .txt
|
|
os.chdir('C:/Users/localadmin/Desktop/Users/Ryan')
|
|
# creates new folder for MAP data
|
|
# new_folder_name = "Test_Map_" + f"{datetime.datetime.now().strftime('%Y_%m_%d_%H.%M')}"
|
|
# os.mkdir(new_folder_name)
|
|
# Here the things will be saved in a new folder under user Lukas !
|
|
# IMPORTANT last / has to be there, otherwise data cannot be saved and will be lost!!!!!!!!!!!!!!!!
|
|
# os.chdir('C:/Users/localadmin/Desktop/Users/Ryan/'+ new_folder_name)
|
|
|
|
# intensity_data = np.array(intensity_data)
|
|
# np.savetxt(Settings + f'{angles[0]}°_to_{angles[-1]}°' + experiment_name +'.txt', intensity_data)
|
|
# TODO: remove/edit experiment_name in line above, as well in sweep_b_val func, rn takes a global variable below
|
|
|
|
# wl = np.array(loaded_files.wavelength)
|
|
# np.savetxt("Wavelength.txt", wl)
|
|
|
|
# NOTE: data struct of device_target_values is a list of dictionaries, where each dictionary contains the target values for each device
|
|
device_target_values = [{'2301034': bval[0], '2101014': bval[1]} for bval in cartesian_coords]
|
|
|
|
# call the helper function to carry out the rotation/measurement of spectrum
|
|
monitor_devices(device_target_values, angles, intensity_data)
|
|
|
|
|
|
################################################################# END OF FUNCTION DEFS ###########################################################################################
|
|
|
|
# NOTE: RYAN INTRODUCED SOME FUNCTIONS HERE TO PERFORM THE SCAN
|
|
|
|
# Initialise PYVISA ResourceManager
|
|
rm = pyvisa.ResourceManager()
|
|
# print(rm.list_resources())
|
|
# 'ASRL8::INSTR' for dual power supply, 'ASRL9::INSTR' for single power supply (online PC)
|
|
# 'ASRL10::INSTR' for dual power supply, 'ASRL12::INSTR' for single power supply (offline PC)
|
|
|
|
try:
|
|
# Open the connection with the APS100 dual power supply
|
|
powerbox_dualsupply = rm.open_resource('ASRL10::INSTR',
|
|
baud_rate=9600,
|
|
data_bits=8,
|
|
parity= pyvisa.constants.Parity.none,
|
|
stop_bits= pyvisa.constants.StopBits.one,
|
|
timeout=10000)# 5000 ms timeout
|
|
write_no_echo(powerbox_dualsupply, 'REMOTE') # turn on the remote mode
|
|
|
|
# # select axis for the dual supply, either z-axis(CHAN 1 ^= Supply A) or x-axis(CHAN 2 ^= Supply B)
|
|
write_no_echo(powerbox_dualsupply, 'CHAN 2')
|
|
# # #for dual until here
|
|
|
|
# Open the connection with the APS100 single power supply
|
|
powerbox_singlesupply = rm.open_resource('ASRL12::INSTR',
|
|
baud_rate=9600,
|
|
data_bits=8,
|
|
parity= pyvisa.constants.Parity.none,
|
|
stop_bits= pyvisa.constants.StopBits.one,
|
|
timeout=10000)# 5000 ms timeout
|
|
write_no_echo(powerbox_singlesupply, 'REMOTE') # turn on the remote mode
|
|
#for single until here
|
|
# TODO: uncomment AMC connection code later, when moving the probe in cryostat is needed.
|
|
# Setup connection to AMC
|
|
# amc = AMC.Device(IP)
|
|
# amc.connect()
|
|
|
|
# # Internally, axes are numbered 0 to 2
|
|
# amc.control.setControlOutput(0, True)
|
|
# amc.control.setControlOutput(1, True)
|
|
|
|
|
|
# auto = Automation(True, List[String]())
|
|
# experiment = auto.LightFieldApplication.Experiment
|
|
# acquireCompleted = AutoResetEvent(False)
|
|
|
|
# experiment.Load("2025_03_28_Priyanka_CrSBr_DR_Sweep")
|
|
# experiment.ExperimentCompleted += experiment_completed # we are hooking a listener.
|
|
# experiment.SetValue(SpectrometerSettings.GratingSelected, '[750nm,1200][0][0]')
|
|
# InitializerFilenameParams()
|
|
|
|
|
|
#set scan range and resolution in nanometers
|
|
range_x = 20000
|
|
range_y = 20000
|
|
resolution = 1000
|
|
# set B-field scan range and resolution (all in T)
|
|
set_llim_bval = -0.3
|
|
set_ulim_bval = 0.3
|
|
set_res_bval = 0.003
|
|
|
|
#Here you can specify the filename of the map e.g. put experiment type, exposure time, used filters, etc....
|
|
# 'PL_SP_700_LP_700_HeNe_52muW_exp_2s_Start_'
|
|
# experiment_settings = 'PL_X_1859.2_Y_3918.3_HeNe_10.4muW_H_a-axis_LP_SP_650_exp_180s_600g_cwl_930_det_b-axis_Pol_90_l2_45'
|
|
experiment_settings = 'DR_white_6th spot_Power_G600_exp_25s_l1_40_l2_262_det_b_mag_b'
|
|
#The program adds the range of the scan as well as the resolution and the date and time of the measurement
|
|
# f"{set_llim_bval}T_to_{set_ulim_bval}T_{set_res_bval}T_{datetime.datetime.now().strftime('%Y_%m_%d_%H%M')}"
|
|
experiment_name = f"{set_llim_bval}T_to_{set_ulim_bval}T_stepsize_{set_res_bval}T"
|
|
|
|
# this moves the probe in xy-direction and measures spectrum there
|
|
# move_scan_xy(range_x, range_y, resolution, experiment_settings, experiment_name)
|
|
|
|
# ramp_b_val(powerbox_singlesupply, 0, 'y-axis')
|
|
# ramp_b_val(powerbox_dualsupply, 0, 'z-axis')
|
|
|
|
|
|
# for single/ dual replace and vice versa all the way down
|
|
# sweep_b_val(powerbox_singlesupply, set_llim_bval, set_ulim_bval, set_res_bval, 'y-axis',
|
|
# experiment_settings, experiment_name, zerowhenfin_bool=True, reversescan_bool=False, loopscan_bool=True)
|
|
b_field_rotation(powerbox_dualsupply, powerbox_singlesupply, Babs=0.1, startangle=0, endangle=3,
|
|
angle_stepsize=1, Settings=experiment_settings, zerowhenfin_bool=True
|
|
)
|
|
|
|
write_no_echo(powerbox_dualsupply, 'LOCAL') # turn off the remote mode
|
|
write_no_echo(powerbox_singlesupply, 'LOCAL') # turn off the remote mode
|
|
|
|
time.sleep(0.5)
|
|
# powerbox_dualsupply.close()
|
|
powerbox_singlesupply.close()
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
# Internally, axes are numbered 0 to 2
|
|
|
|
write_no_echo(powerbox_dualsupply, 'LOCAL') # turn off the remote mode
|
|
write_no_echo(powerbox_singlesupply, 'LOCAL') # turn off the remote mode
|
|
|
|
time.sleep(0.5)
|
|
powerbox_dualsupply.close()
|
|
powerbox_singlesupply.close() |