#%% import numpy as np import mdevaluate as md import mdevaluate.extra.free_energy_landscape as fel data_dir = "/data/skloth/python_packages/mdevaluate_examples/plots" path_to_sim = ( "/data/skloth/sim/silica_pore/tip4p2005/D3_L6_S4.9_R0/T300_isochor/T250_nvt_long" ) trajectory = md.open(path_to_sim, topology="run.tpr", trajectory="out/traj_full.xtc") OW = trajectory.subset(atom_name="OW") box = trajectory[0].box box_voxels = (np.diag(box) // [0.05, 0.05, 0.05] + [1, 1, 1]) * [0.05, 0.05, 0.05] occupation_matrix = fel.occupation_matrix(OW, skip=0, segments=1000) radius_maxima = 0.05 * 3 ** (1 / 2) + 0.05 / 100 maxima_matrix = fel.find_maxima( occupation_matrix, box=box_voxels, radius=radius_maxima, pore_geometry="cylindrical" ) maxima_matrix = fel.add_distances(maxima_matrix, "cylindrical", box / 2) r_bins = np.arange(0, 1, 0.02) distance_bins = np.arange(0.05, 1.55, 0.1) energy_df = fel.distance_resolved_energies( maxima_matrix, distance_bins, r_bins, box, "cylindrical", 225 ) result = fel.find_energy_maxima(energy_df, r_min=0.05, r_max=0.15) #%% print(sum(maxima_matrix["maxima"] == True)) #%% energy_df = fel.distance_resolved_energies( maxima_matrix, distance_bins, r_bins, box, temperature=250 ) # %% print(energy_df)