Files

192 lines
7.7 KiB
Python

# -*- coding: iso-8859-1 -*-
from xml.etree import cElementTree as ET
import time
TXEnableDelay = 2e-6
TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0)
TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1)
ADCSensitivity = 0.5 # voltage span for ADC
def experiment(): # CosCos-Stimulated Echos for central excitation
# set up acquisition parameters:
pars = {}
pars['P90'] = 5.3e-6 # 90-degree pulse length (s)
pars['SF'] = 95.2e6 # spectrometer frequency (Hz)
pars['O1'] = 0 # offset from SF (Hz)
pars['SW'] = 5e6 # spectral window (Hz)
pars['SI'] = 8*1024 # number of acquisition points
pars['NS'] = 32*32*2#*3 # number of scans # multiple of 32
pars['DS'] = 0 # number of dummy scans
pars['RD'] = 0.1 # delay between scans (s) (Recycle Delay)
pars['TAU'] = 0.014*7 # delay between SatRec and experiment (s)
pars['D1'] = 20e-6 # delay after first pulse, or short tau (s)
pars['D2'] = 10e-6 # delay after second pulse, or long tau (s)
pars['D_PREAQ'] = 5e-6
pars['PHA'] =335 # receiver phase (degree)
### SatRec
pars['D3'] = 1e-5 # shortest SatRec delay
pars['D4'] = 1e-3 # longest SatRec delay
pars["NECH"] = 12 # number of saturation pulse
###
pars['DATADIR'] = '/home/fprak/Desktop/' # data directory
pars['OUTFILE'] = None # output file name
# specify a variable parameter (optional):
pars['tp'] = [20e-6,50e-6,90e-6,150e-6,300e-6]#[12e-6, 20e-6, 30e-6, 50e-6, 75e-6, 90e-6, 125e-6, 200e-6]
pars['VAR_PAR'] = 'D2' # variable parameter name (a string)
start = 20e-6 # starting value
stop =0.3 # end value
steps = 21 # number of values
log_scale = True # log scale flag
stag_range = True # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("Pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start,stop,steps)
else:
array = lin_range(start,stop,steps)
if stag_range:
array = staggered_range(array, size = 3)
# estimate time by looping once over everything
duration = 0
for tp in pars["tp"]:
for index, var_par_value in enumerate(array):
# assign each var_key the corresponding var_value
pars[var_key] = var_par_value
# parse state tree
e_xml = ET.fromstring(spinal32_experiment(pars, 0).write_xml_string())
# sum up all time=x states
for a_state in e_xml.iter("state"):
duration += float(a_state.get("time"))*(pars['NS'] + pars['DS'])
print duration
t = time.localtime(duration)
print "\n\nINFO: Experiment will be finnished in: %id %ih %im" % (t.tm_mday-1, t.tm_hour-1, t.tm_min)
print "INFO: Experiment will be finnished at: %s\n\n" % (time.ctime(time.time() + duration))
# loop for a variable parameter:
for tp in pars['tp']:
pars['D1'] = tp
for index, pars[var_key] in enumerate(array):
print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(len(pars['tp'])*array.size)+': value = ' + str(tp) + ' / '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield spinal32_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield spinal32_experiment(pars, run)
# the pulse program:
def spinal32_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'coscos32_experiment'
# phase cycle by F. Qi et al. [JMR 169 (2004) 225-239] with 3rd-phase invertion
pars['PH1'] = [270, 270, 270, 270, 90, 90, 90, 90, 270, 270, 270, 270, 90, 90, 90, 90, 180, 180, 180, 180, 0,0,0,0, 180, 180, 180, 180, 0,0,0,0]
pars['PH3'] = [270, 270, 90, 90, 270, 270, 90, 90, 270, 270, 90, 90, 270, 270, 90, 90, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180, 0, 0]
pars['PH4'] = [270, 90, 270, 90, 270, 90, 270, 90, 180, 0, 180, 0, 180, 0, 180, 0, 270, 90, 270, 90, 270, 90, 270, 90, 180, 0, 180, 0, 180, 0, 180, 0]
pars['PH2'] = [270, 90, 90, 270, 90, 270, 270, 90, 180, 0, 0, 180, 0, 180, 180, 0, 270, 90, 90, 270, 90, 270, 270, 90, 180, 0, 0, 180, 0, 180, 180, 0]
# read in variables:
P90 = pars['P90']
SF = pars['SF']
O1 = pars['O1']
RD = pars['RD']
D1 = pars['D1']
D2 = pars['D2']
D3 = pars['D3']
D4 = pars['D4']
D_PREAQ = pars['D_PREAQ']
TAU = pars['TAU']
NECH = pars['NECH']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH4 = pars['PH4'][run%len(pars['PH4'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set sampling parameters:
SI = pars['SI']
SW = pars['SW']
# run the pulse program:
# saturation:
# set variable delay list for saturation pulses:
vdlist = log_range(D4, D3, NECH-1)
e.wait(RD) # relaxation delay between scans
e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for saturation pulses
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
for delay in vdlist[::-1]:
e.wait(delay-P90-TXEnableDelay) # wait for next saturation pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
# recovery:
e.set_phase(PH1)
e.wait(TAU-0.5e-6) # wait for tau
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.set_phase(PH3)
e.wait(D1-P90-TXEnableDelay-0.5e-6) # 'short tau'
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.set_phase(PH4)
e.wait(D2-P90-TXEnableDelay-0.5e-6) # 'long tau'
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.set_phase(PHA)
e.wait(D1-P90/2-0.5e-6-D_PREAQ) # 'short tau'
e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition
# write experiment parameters:
for key in pars.keys():
e.set_description(key, pars[key]) # acqusition parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e