Added module for water structure parameters

This commit is contained in:
Sebastian Kloth 2024-01-08 07:42:04 +01:00
parent 4f17cfe876
commit 949ed877fb
2 changed files with 420 additions and 0 deletions
src/mdevaluate/extra

View File

@ -1,2 +1,3 @@
from . import chill
from . import free_energy_landscape
from . import water

View File

@ -0,0 +1,419 @@
from functools import partial
from typing import Tuple, Callable, Optional
import numpy as np
from numpy.typing import NDArray, ArrayLike
import pandas as pd
from scipy.spatial import KDTree
from ..distribution import hbonds
from ..pbc import pbc_points
from ..correlation import shifted_correlation, overlap
from ..coordinates import Coordinates, CoordinateFrame
def tanaka_zeta(
trajectory: Coordinates, angle: float = 30, segments: int = 100, skip: float = 0.1
) -> pd.DataFrame:
frame_indices = np.unique(
np.int_(np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments))
)
sel = trajectory.atom_subset.selection
A = np.where(
trajectory.subset(atom_name="OW", residue_name="SOL").atom_subset.selection[sel]
)[0]
D = np.vstack([A] * 2).T.reshape((-1,))
H = np.where(
trajectory.subset(atom_name="HW.", residue_name="SOL").atom_subset.selection[
sel
]
)[0]
zeta_dist = []
zeta_cg_dist = []
for frame_index in frame_indices:
D_frame = trajectory[frame_index][D]
H_frame = trajectory[frame_index][H]
A_frame = trajectory[frame_index][A]
box = trajectory[frame_index].box
pairs = hbonds(
D_frame, H_frame, A_frame, box, min_cos=np.cos(angle / 180 * np.pi)
)
pairs[:, 0] = np.int_((pairs[:, 0] / 2))
pairs = np.sort(pairs, axis=1)
pairs = np.unique(pairs, axis=0)
pairs = pairs.tolist()
A_PBC, A_index = pbc_points(A_frame, box, thickness=0.7, index=True)
A_tree = KDTree(A_PBC)
dist, dist_index = A_tree.query(A_frame, 16, distance_upper_bound=0.7)
dist_index = A_index[dist_index]
zeta = []
for i, indices in enumerate(dist_index):
dist_hbond = []
dist_non_hbond = []
for j, index in enumerate(indices):
if j != 0:
if np.sort([indices[0], index]).tolist() in pairs:
dist_hbond.append(dist[i, j])
else:
dist_non_hbond.append(dist[i, j])
try:
zeta.append(np.min(dist_non_hbond) - np.max(dist_hbond))
except ValueError:
zeta.append(0)
zeta = np.array(zeta)
dist, dist_index = A_tree.query(A_frame, 16, distance_upper_bound=0.7)
dist_index = A_index[dist_index]
dist_index = np.array(
[indices[dist[i] <= 0.35] for i, indices in enumerate(dist_index)]
)
zeta_cg = np.array([np.mean(zeta[indices]) for indices in dist_index])
bins = np.linspace(-0.1, 0.2, 301)
zeta_dist.append(np.histogram(zeta, bins=bins)[0])
zeta_cg_dist.append(np.histogram(zeta_cg, bins=bins)[0])
z = bins[1:] - (bins[1] - bins[0]) / 2
zeta_dist = np.mean(zeta_dist, axis=0)
zeta_dist = zeta_dist / np.mean(zeta_dist)
zeta_cg_dist = np.mean(zeta_cg_dist, axis=0)
zeta_cg_dist = zeta_cg_dist / np.mean(zeta_cg_dist)
return pd.DataFrame({"zeta": z, "result": zeta_dist, "result_cg": zeta_cg_dist})
def chi_four_trans(
trajectory: Coordinates, skip: float = 0.1, segments: int = 10000
) -> pd.DataFrame:
traj = trajectory.nojump
N = len(trajectory[0])
t, S = shifted_correlation(
partial(overlap, radius=0.1), traj, skip=skip, segments=segments, average=False
)
chi = 1 / N * S.var(axis=0)[1:]
return pd.DataFrame({"time": t[1:], "chi": chi})
def tanaka_correlation_map(
trajectory: Coordinates,
data_chi_four_trans: pd.DataFrame,
angle: float = 30,
segments: int = 100,
skip: float = 0.1,
) -> pd.DataFrame:
def tanaka_zeta_cg(
trajectory: Coordinates,
angle: float = 30,
segments: int = 1000,
skip: float = 0.1,
) -> Tuple[NDArray, NDArray]:
frame_indices = np.unique(
np.int_(
np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments)
)
)
sel = trajectory.atom_subset.selection
A = np.where(
trajectory.subset(atom_name="OW", residue_name="SOL").atom_subset.selection[
sel
]
)[0]
D = np.vstack([A] * 2).T.reshape((-1,))
H = np.where(
trajectory.subset(
atom_name="HW.", residue_name="SOL"
).atom_subset.selection[sel]
)[0]
zeta_cg = []
times = []
for frame_index in frame_indices:
D_frame = trajectory[frame_index][D]
H_frame = trajectory[frame_index][H]
A_frame = trajectory[frame_index][A]
box = trajectory[frame_index].box
pairs = hbonds(
D_frame, H_frame, A_frame, box, min_cos=np.cos(angle / 180 * np.pi)
)
pairs[:, 0] = np.int_((pairs[:, 0] / 2))
pairs = np.sort(pairs, axis=1)
pairs = np.unique(pairs, axis=0)
pairs = pairs.tolist()
A_PBC, A_index = pbc_points(A_frame, box, thickness=0.7, index=True)
A_tree = KDTree(A_PBC)
dist, dist_index = A_tree.query(A_frame, 16, distance_upper_bound=0.7)
dist_index = A_index[dist_index]
zeta = []
for i, indices in enumerate(dist_index):
dist_hbond = []
dist_non_hbond = []
for j, index in enumerate(indices):
if j != 0:
if np.sort([indices[0], index]).tolist() in pairs:
dist_hbond.append(dist[i, j])
else:
dist_non_hbond.append(dist[i, j])
try:
zeta.append(np.min(dist_non_hbond) - np.max(dist_hbond))
except ValueError:
zeta.append(0)
zeta = np.array(zeta)
dist_index = np.array(
[indices[dist[i] <= 0.35] for i, indices in enumerate(dist_index)]
)
zeta_cg.append(np.array([np.mean(zeta[indices]) for indices in dist_index]))
times.append(trajectory[frame_index].time)
return np.array(times), np.array(zeta_cg)
def delta_r_max(
trajectory: Coordinates, frame: CoordinateFrame, tau_4: float
) -> NDArray:
dt = trajectory[1].time - trajectory[0].time
index_start = frame.step
index_end = index_start + int(tau_4 / dt) + 1
frame_indices = np.arange(index_start, index_end + 1)
end_cords = np.array([trajectory[frame_index] for frame_index in frame_indices])
vectors = trajectory[index_start] - end_cords
delta_r = np.linalg.norm(vectors, axis=-1)
delta_r = np.max(delta_r, axis=0)
return delta_r
d = np.array(data_chi_four_trans[["time", "chi"]])
mask = d[:, 1] >= 0.7 * np.max(d[:, 1])
fit = np.polyfit(d[mask, 0], d[mask, 1], 4)
p = np.poly1d(fit)
x_inter = np.linspace(d[mask, 0][0], d[mask, 0][-1], 1e6)
y_inter = p(x_inter)
tau_4 = x_inter[y_inter == np.max(y_inter)]
oxygens = trajectory.nojump.subset(atom_name="OW")
window = tau_4 / trajectory[-1].time
start_frames = np.unique(
np.linspace(
len(trajectory) * skip,
len(trajectory) * (1 - window),
num=segments,
endpoint=False,
dtype=int,
)
)
times, zeta_cg = tanaka_zeta_cg(trajectory, angle=angle)
zeta_cg_mean = np.array(
[
np.mean(
zeta_cg[
(times >= trajectory[start_frame].time)
* (times <= (trajectory[start_frame].time + tau_4))
],
axis=0,
)
for start_frame in start_frames
]
).flatten()
delta_r = np.array(
[
delta_r_max(oxygens, oxygens[start_frame], tau_4)
for start_frame in start_frames
]
).flatten()
return pd.DataFrame({"zeta_cg": zeta_cg_mean, "delta_r": delta_r})
def LSI_atom(distances: ArrayLike) -> NDArray:
r_j = distances[distances <= 0.37]
r_j = r_j.tolist()
r_j.append(distances[len(r_j)])
delta_ji = [r_j[i + 1] - r_j[i] for i in range(0, len(r_j) - 1)]
mean_delta_i = np.mean(delta_ji)
I = 1 / len(delta_ji) * np.sum((mean_delta_i - delta_ji) ** 2)
return I
def LSI(
trajectory: Coordinates, segments: int = 10000, skip: float = 0
) -> pd.DataFrame:
def LSI_distribution(
frame: CoordinateFrame, bins: NDArray, selector: Optional[Callable] = None
) -> NDArray:
atoms_PBC = pbc_points(frame, frame.box, thickness=0.7)
atoms_tree = KDTree(atoms_PBC)
if selector:
index = selector(frame)
else:
index = np.arange(len(frame))
dist, _ = atoms_tree.query(frame[index], 50, distance_upper_bound=0.6)
distances = dist[:, 1:]
LSI_values = np.array([LSI_atom(distance) for distance in distances])
dist = np.histogram(LSI_values, bins=bins, density=True)[0]
return dist
bins = np.linspace(0, 0.007, 201)
I = bins[1:] - (bins[1] - bins[0]) / 2
frame_indices = np.unique(
np.int_(np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments))
)
distributions = np.array(
[
LSI_distribution(trajectory[frame_index], trajectory, bins, selector=None)
for frame_index in frame_indices
]
)
P = np.mean(distributions, axis=0)
return pd.DataFrame({"I": I, "P": P})
def HDL_LDL_positions(frame, trajectory, selector=None):
atoms_PBC = pbc_points(frame, frame.box, thickness=0.7)
atoms_tree = KDTree(atoms_PBC)
if selector:
index = selector(frame)
else:
index = range(len(frame))
dist = atoms_tree.query(frame[index], 50, distance_upper_bound=0.6)[0]
distances = dist[:, 1:]
LSI_values = np.array([LSI_atom(distance) for distance in distances])
LDL = LSI_values >= 0.0013
HDL = LSI_values < 0.0013
pos_HDL = frame[index][HDL]
pos_LDL = frame[index][LDL]
return pos_HDL, pos_LDL
def HDL_LDL_gr(trajectory, segments=10000, skip=0):
def gr_frame(frame, trajectory, bins):
atoms_ALL = frame
atoms_HDL, atoms_LDL = HDL_LDL_positions(frame, trajectory)
atoms_PBC_ALL = pbc_points(atoms_ALL, frame.box)
atoms_PBC_LDL = pbc_points(atoms_LDL, frame.box)
atoms_PBC_HDL = pbc_points(atoms_HDL, frame.box)
tree_ALL = KDTree(atoms_PBC_ALL)
tree_LDL = KDTree(atoms_PBC_LDL)
tree_HDL = KDTree(atoms_PBC_HDL)
dist_ALL_ALL, _ = tree_ALL.query(
atoms_ALL, len(frame) // 2, distance_upper_bound=bins[-1] + 0.1
)
dist_HDL_HDL, _ = tree_HDL.query(
atoms_HDL, len(frame) // 2, distance_upper_bound=bins[-1] + 0.1
)
dist_LDL_LDL, _ = tree_LDL.query(
atoms_LDL, len(frame) // 2, distance_upper_bound=bins[-1] + 0.1
)
dist_HDL_LDL, _ = tree_LDL.query(
atoms_HDL, len(frame) // 2, distance_upper_bound=bins[-1] + 0.1
)
dist_ALL_ALL = dist_ALL_ALL[:, 1:].flatten()
dist_HDL_HDL = dist_HDL_HDL[:, 1:].flatten()
dist_LDL_LDL = dist_LDL_LDL[:, 1:].flatten()
dist_HDL_LDL = dist_HDL_LDL.flatten()
hist_ALL_ALL = np.histogram(
dist_ALL_ALL, bins=bins, range=(0, bins[-1]), density=False
)[0]
hist_HDL_HDL = np.histogram(
dist_HDL_HDL, bins=bins, range=(0, bins[-1]), density=False
)[0]
hist_LDL_LDL = np.histogram(
dist_LDL_LDL, bins=bins, range=(0, bins[-1]), density=False
)[0]
hist_HDL_LDL = np.histogram(
dist_HDL_LDL, bins=bins, range=(0, bins[-1]), density=False
)[0]
n = [len(atoms_ALL), len(atoms_HDL), len(atoms_LDL)] / np.prod(
np.diag(frame.box)
)
return (
np.array(
[
hist_ALL_ALL / len(atoms_ALL),
hist_HDL_HDL / len(atoms_HDL),
hist_LDL_LDL / len(atoms_LDL),
hist_HDL_LDL / len(atoms_HDL),
]
),
n,
)
start_frame = trajectory[int(len(trajectory) * skip)]
upper_bound = round(np.min(np.diag(start_frame.box)) / 2 - 0.05, 1)
bins = np.linspace(0, upper_bound, upper_bound * 500 + 1)
frame_indices = np.unique(
np.int_(np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments))
)
gr = []
ns = []
for frame_index in frame_indices:
hists, n = gr_frame(trajectory[frame_index], trajectory, bins)
gr.append(hists)
ns.append(n)
gr = np.mean(gr, axis=0)
gr = gr / (4 / 3 * np.pi * bins[1:] ** 3 - 4 / 3 * np.pi * bins[:-1] ** 3)
r = bins[1:] - (bins[1] - bins[0]) / 2
n = np.mean(ns, axis=0)
return pd.DataFrame(
{"r": r, "gr_ALL": [0], "gr_HDL": gr[1], "gr_LDL": gr[2], "gr_MIX": gr[3]}
)
def HDL_LDL_concentration(trajectory, segments=10000, skip=0):
def HDL_LDL_concentration_frame(frame, trajectrory, bins):
atoms_HDL, atoms_LDL = HDL_LDL_positions(frame, trajectory)
atoms_PBC_HDL = pbc_points(atoms_HDL, frame.box, thickness=0.61)
atoms_PBC_LDL = pbc_points(atoms_LDL, frame.box, thickness=0.61)
tree_LDL = KDTree(atoms_PBC_LDL)
tree_HDL = KDTree(atoms_PBC_HDL)
dist_HDL_HDL, _ = tree_HDL.query(atoms_HDL, 31, distance_upper_bound=0.6)
dist_HDL_LDL, _ = tree_LDL.query(atoms_HDL, 30, distance_upper_bound=0.6)
HDL_near_HDL = np.sum(
dist_HDL_HDL <= 0.5, axis=-1
) # Ausgangsteilchen dazu zählen
LDL_near_HDL = np.sum(dist_HDL_LDL <= 0.5, axis=-1)
x_HDL = HDL_near_HDL / (HDL_near_HDL + LDL_near_HDL)
x_HDL_dist = np.histogram(x_HDL, bins=bins, range=(0, bins[-1]), density=True)[
0
]
dist_LDL_LDL, _ = tree_LDL.query(atoms_LDL, 31, distance_upper_bound=0.6)
dist_LDL_HDL, _ = tree_HDL.query(atoms_LDL, 30, distance_upper_bound=0.6)
LDL_near_LDL = np.sum(
dist_LDL_LDL <= 0.5, axis=-1
) # Ausgangsteilchen dazu zählen
HDL_near_LDL = np.sum(dist_LDL_HDL <= 0.5, axis=-1)
x_LDL = LDL_near_LDL / (LDL_near_LDL + HDL_near_LDL)
x_LDL_dist = np.histogram(x_LDL, bins=bins, range=(0, bins[-1]), density=True)[
0
]
return x_HDL_dist, x_LDL_dist
bins = np.linspace(0, 1, 21)
x = bins[1:] - (bins[1] - bins[0]) / 2
frame_indices = np.unique(
np.int_(np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments))
)
local_concentration_dist = np.array(
[
HDL_LDL_concentration_frame(trajectory[frame_index], trajectory, bins)
for frame_index in frame_indices
]
)
x_HDL = np.mean(local_concentration_dist[:, 0], axis=0)
x_LDL = np.mean(local_concentration_dist[:, 1], axis=0)
return pd.DataFrame({"x": x, "x_HDL": x_HDL, "x_LDL": x_LDL})