Added module for water structure parameters
This commit is contained in:
parent
4f17cfe876
commit
949ed877fb
@ -1,2 +1,3 @@
|
||||
from . import chill
|
||||
from . import free_energy_landscape
|
||||
from . import water
|
||||
|
419
src/mdevaluate/extra/water.py
Normal file
419
src/mdevaluate/extra/water.py
Normal file
@ -0,0 +1,419 @@
|
||||
from functools import partial
|
||||
from typing import Tuple, Callable, Optional
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
import pandas as pd
|
||||
from scipy.spatial import KDTree
|
||||
|
||||
from ..distribution import hbonds
|
||||
from ..pbc import pbc_points
|
||||
from ..correlation import shifted_correlation, overlap
|
||||
from ..coordinates import Coordinates, CoordinateFrame
|
||||
|
||||
|
||||
def tanaka_zeta(
|
||||
trajectory: Coordinates, angle: float = 30, segments: int = 100, skip: float = 0.1
|
||||
) -> pd.DataFrame:
|
||||
frame_indices = np.unique(
|
||||
np.int_(np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments))
|
||||
)
|
||||
sel = trajectory.atom_subset.selection
|
||||
A = np.where(
|
||||
trajectory.subset(atom_name="OW", residue_name="SOL").atom_subset.selection[sel]
|
||||
)[0]
|
||||
D = np.vstack([A] * 2).T.reshape((-1,))
|
||||
H = np.where(
|
||||
trajectory.subset(atom_name="HW.", residue_name="SOL").atom_subset.selection[
|
||||
sel
|
||||
]
|
||||
)[0]
|
||||
|
||||
zeta_dist = []
|
||||
zeta_cg_dist = []
|
||||
for frame_index in frame_indices:
|
||||
D_frame = trajectory[frame_index][D]
|
||||
H_frame = trajectory[frame_index][H]
|
||||
A_frame = trajectory[frame_index][A]
|
||||
box = trajectory[frame_index].box
|
||||
pairs = hbonds(
|
||||
D_frame, H_frame, A_frame, box, min_cos=np.cos(angle / 180 * np.pi)
|
||||
)
|
||||
pairs[:, 0] = np.int_((pairs[:, 0] / 2))
|
||||
pairs = np.sort(pairs, axis=1)
|
||||
pairs = np.unique(pairs, axis=0)
|
||||
pairs = pairs.tolist()
|
||||
|
||||
A_PBC, A_index = pbc_points(A_frame, box, thickness=0.7, index=True)
|
||||
A_tree = KDTree(A_PBC)
|
||||
dist, dist_index = A_tree.query(A_frame, 16, distance_upper_bound=0.7)
|
||||
|
||||
dist_index = A_index[dist_index]
|
||||
zeta = []
|
||||
for i, indices in enumerate(dist_index):
|
||||
dist_hbond = []
|
||||
dist_non_hbond = []
|
||||
for j, index in enumerate(indices):
|
||||
if j != 0:
|
||||
if np.sort([indices[0], index]).tolist() in pairs:
|
||||
dist_hbond.append(dist[i, j])
|
||||
else:
|
||||
dist_non_hbond.append(dist[i, j])
|
||||
try:
|
||||
zeta.append(np.min(dist_non_hbond) - np.max(dist_hbond))
|
||||
except ValueError:
|
||||
zeta.append(0)
|
||||
|
||||
zeta = np.array(zeta)
|
||||
|
||||
dist, dist_index = A_tree.query(A_frame, 16, distance_upper_bound=0.7)
|
||||
dist_index = A_index[dist_index]
|
||||
dist_index = np.array(
|
||||
[indices[dist[i] <= 0.35] for i, indices in enumerate(dist_index)]
|
||||
)
|
||||
zeta_cg = np.array([np.mean(zeta[indices]) for indices in dist_index])
|
||||
|
||||
bins = np.linspace(-0.1, 0.2, 301)
|
||||
zeta_dist.append(np.histogram(zeta, bins=bins)[0])
|
||||
zeta_cg_dist.append(np.histogram(zeta_cg, bins=bins)[0])
|
||||
z = bins[1:] - (bins[1] - bins[0]) / 2
|
||||
|
||||
zeta_dist = np.mean(zeta_dist, axis=0)
|
||||
zeta_dist = zeta_dist / np.mean(zeta_dist)
|
||||
|
||||
zeta_cg_dist = np.mean(zeta_cg_dist, axis=0)
|
||||
zeta_cg_dist = zeta_cg_dist / np.mean(zeta_cg_dist)
|
||||
|
||||
return pd.DataFrame({"zeta": z, "result": zeta_dist, "result_cg": zeta_cg_dist})
|
||||
|
||||
|
||||
def chi_four_trans(
|
||||
trajectory: Coordinates, skip: float = 0.1, segments: int = 10000
|
||||
) -> pd.DataFrame:
|
||||
traj = trajectory.nojump
|
||||
N = len(trajectory[0])
|
||||
t, S = shifted_correlation(
|
||||
partial(overlap, radius=0.1), traj, skip=skip, segments=segments, average=False
|
||||
)
|
||||
chi = 1 / N * S.var(axis=0)[1:]
|
||||
return pd.DataFrame({"time": t[1:], "chi": chi})
|
||||
|
||||
|
||||
def tanaka_correlation_map(
|
||||
trajectory: Coordinates,
|
||||
data_chi_four_trans: pd.DataFrame,
|
||||
angle: float = 30,
|
||||
segments: int = 100,
|
||||
skip: float = 0.1,
|
||||
) -> pd.DataFrame:
|
||||
def tanaka_zeta_cg(
|
||||
trajectory: Coordinates,
|
||||
angle: float = 30,
|
||||
segments: int = 1000,
|
||||
skip: float = 0.1,
|
||||
) -> Tuple[NDArray, NDArray]:
|
||||
frame_indices = np.unique(
|
||||
np.int_(
|
||||
np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments)
|
||||
)
|
||||
)
|
||||
sel = trajectory.atom_subset.selection
|
||||
A = np.where(
|
||||
trajectory.subset(atom_name="OW", residue_name="SOL").atom_subset.selection[
|
||||
sel
|
||||
]
|
||||
)[0]
|
||||
D = np.vstack([A] * 2).T.reshape((-1,))
|
||||
H = np.where(
|
||||
trajectory.subset(
|
||||
atom_name="HW.", residue_name="SOL"
|
||||
).atom_subset.selection[sel]
|
||||
)[0]
|
||||
|
||||
zeta_cg = []
|
||||
times = []
|
||||
for frame_index in frame_indices:
|
||||
D_frame = trajectory[frame_index][D]
|
||||
H_frame = trajectory[frame_index][H]
|
||||
A_frame = trajectory[frame_index][A]
|
||||
box = trajectory[frame_index].box
|
||||
pairs = hbonds(
|
||||
D_frame, H_frame, A_frame, box, min_cos=np.cos(angle / 180 * np.pi)
|
||||
)
|
||||
pairs[:, 0] = np.int_((pairs[:, 0] / 2))
|
||||
pairs = np.sort(pairs, axis=1)
|
||||
pairs = np.unique(pairs, axis=0)
|
||||
pairs = pairs.tolist()
|
||||
|
||||
A_PBC, A_index = pbc_points(A_frame, box, thickness=0.7, index=True)
|
||||
A_tree = KDTree(A_PBC)
|
||||
dist, dist_index = A_tree.query(A_frame, 16, distance_upper_bound=0.7)
|
||||
|
||||
dist_index = A_index[dist_index]
|
||||
zeta = []
|
||||
for i, indices in enumerate(dist_index):
|
||||
dist_hbond = []
|
||||
dist_non_hbond = []
|
||||
for j, index in enumerate(indices):
|
||||
if j != 0:
|
||||
if np.sort([indices[0], index]).tolist() in pairs:
|
||||
dist_hbond.append(dist[i, j])
|
||||
else:
|
||||
dist_non_hbond.append(dist[i, j])
|
||||
try:
|
||||
zeta.append(np.min(dist_non_hbond) - np.max(dist_hbond))
|
||||
except ValueError:
|
||||
zeta.append(0)
|
||||
zeta = np.array(zeta)
|
||||
dist_index = np.array(
|
||||
[indices[dist[i] <= 0.35] for i, indices in enumerate(dist_index)]
|
||||
)
|
||||
zeta_cg.append(np.array([np.mean(zeta[indices]) for indices in dist_index]))
|
||||
times.append(trajectory[frame_index].time)
|
||||
return np.array(times), np.array(zeta_cg)
|
||||
|
||||
def delta_r_max(
|
||||
trajectory: Coordinates, frame: CoordinateFrame, tau_4: float
|
||||
) -> NDArray:
|
||||
dt = trajectory[1].time - trajectory[0].time
|
||||
index_start = frame.step
|
||||
index_end = index_start + int(tau_4 / dt) + 1
|
||||
frame_indices = np.arange(index_start, index_end + 1)
|
||||
end_cords = np.array([trajectory[frame_index] for frame_index in frame_indices])
|
||||
vectors = trajectory[index_start] - end_cords
|
||||
|
||||
delta_r = np.linalg.norm(vectors, axis=-1)
|
||||
delta_r = np.max(delta_r, axis=0)
|
||||
return delta_r
|
||||
|
||||
d = np.array(data_chi_four_trans[["time", "chi"]])
|
||||
mask = d[:, 1] >= 0.7 * np.max(d[:, 1])
|
||||
fit = np.polyfit(d[mask, 0], d[mask, 1], 4)
|
||||
p = np.poly1d(fit)
|
||||
x_inter = np.linspace(d[mask, 0][0], d[mask, 0][-1], 1e6)
|
||||
y_inter = p(x_inter)
|
||||
tau_4 = x_inter[y_inter == np.max(y_inter)]
|
||||
|
||||
oxygens = trajectory.nojump.subset(atom_name="OW")
|
||||
window = tau_4 / trajectory[-1].time
|
||||
start_frames = np.unique(
|
||||
np.linspace(
|
||||
len(trajectory) * skip,
|
||||
len(trajectory) * (1 - window),
|
||||
num=segments,
|
||||
endpoint=False,
|
||||
dtype=int,
|
||||
)
|
||||
)
|
||||
|
||||
times, zeta_cg = tanaka_zeta_cg(trajectory, angle=angle)
|
||||
|
||||
zeta_cg_mean = np.array(
|
||||
[
|
||||
np.mean(
|
||||
zeta_cg[
|
||||
(times >= trajectory[start_frame].time)
|
||||
* (times <= (trajectory[start_frame].time + tau_4))
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
for start_frame in start_frames
|
||||
]
|
||||
).flatten()
|
||||
delta_r = np.array(
|
||||
[
|
||||
delta_r_max(oxygens, oxygens[start_frame], tau_4)
|
||||
for start_frame in start_frames
|
||||
]
|
||||
).flatten()
|
||||
return pd.DataFrame({"zeta_cg": zeta_cg_mean, "delta_r": delta_r})
|
||||
|
||||
|
||||
def LSI_atom(distances: ArrayLike) -> NDArray:
|
||||
r_j = distances[distances <= 0.37]
|
||||
r_j = r_j.tolist()
|
||||
r_j.append(distances[len(r_j)])
|
||||
delta_ji = [r_j[i + 1] - r_j[i] for i in range(0, len(r_j) - 1)]
|
||||
mean_delta_i = np.mean(delta_ji)
|
||||
I = 1 / len(delta_ji) * np.sum((mean_delta_i - delta_ji) ** 2)
|
||||
return I
|
||||
|
||||
|
||||
def LSI(
|
||||
trajectory: Coordinates, segments: int = 10000, skip: float = 0
|
||||
) -> pd.DataFrame:
|
||||
def LSI_distribution(
|
||||
frame: CoordinateFrame, bins: NDArray, selector: Optional[Callable] = None
|
||||
) -> NDArray:
|
||||
atoms_PBC = pbc_points(frame, frame.box, thickness=0.7)
|
||||
atoms_tree = KDTree(atoms_PBC)
|
||||
if selector:
|
||||
index = selector(frame)
|
||||
else:
|
||||
index = np.arange(len(frame))
|
||||
dist, _ = atoms_tree.query(frame[index], 50, distance_upper_bound=0.6)
|
||||
distances = dist[:, 1:]
|
||||
LSI_values = np.array([LSI_atom(distance) for distance in distances])
|
||||
dist = np.histogram(LSI_values, bins=bins, density=True)[0]
|
||||
return dist
|
||||
|
||||
bins = np.linspace(0, 0.007, 201)
|
||||
I = bins[1:] - (bins[1] - bins[0]) / 2
|
||||
|
||||
frame_indices = np.unique(
|
||||
np.int_(np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments))
|
||||
)
|
||||
distributions = np.array(
|
||||
[
|
||||
LSI_distribution(trajectory[frame_index], trajectory, bins, selector=None)
|
||||
for frame_index in frame_indices
|
||||
]
|
||||
)
|
||||
P = np.mean(distributions, axis=0)
|
||||
return pd.DataFrame({"I": I, "P": P})
|
||||
|
||||
|
||||
def HDL_LDL_positions(frame, trajectory, selector=None):
|
||||
atoms_PBC = pbc_points(frame, frame.box, thickness=0.7)
|
||||
atoms_tree = KDTree(atoms_PBC)
|
||||
if selector:
|
||||
index = selector(frame)
|
||||
else:
|
||||
index = range(len(frame))
|
||||
dist = atoms_tree.query(frame[index], 50, distance_upper_bound=0.6)[0]
|
||||
distances = dist[:, 1:]
|
||||
LSI_values = np.array([LSI_atom(distance) for distance in distances])
|
||||
LDL = LSI_values >= 0.0013
|
||||
HDL = LSI_values < 0.0013
|
||||
pos_HDL = frame[index][HDL]
|
||||
pos_LDL = frame[index][LDL]
|
||||
return pos_HDL, pos_LDL
|
||||
|
||||
|
||||
def HDL_LDL_gr(trajectory, segments=10000, skip=0):
|
||||
def gr_frame(frame, trajectory, bins):
|
||||
atoms_ALL = frame
|
||||
atoms_HDL, atoms_LDL = HDL_LDL_positions(frame, trajectory)
|
||||
|
||||
atoms_PBC_ALL = pbc_points(atoms_ALL, frame.box)
|
||||
atoms_PBC_LDL = pbc_points(atoms_LDL, frame.box)
|
||||
atoms_PBC_HDL = pbc_points(atoms_HDL, frame.box)
|
||||
|
||||
tree_ALL = KDTree(atoms_PBC_ALL)
|
||||
tree_LDL = KDTree(atoms_PBC_LDL)
|
||||
tree_HDL = KDTree(atoms_PBC_HDL)
|
||||
|
||||
dist_ALL_ALL, _ = tree_ALL.query(
|
||||
atoms_ALL, len(frame) // 2, distance_upper_bound=bins[-1] + 0.1
|
||||
)
|
||||
dist_HDL_HDL, _ = tree_HDL.query(
|
||||
atoms_HDL, len(frame) // 2, distance_upper_bound=bins[-1] + 0.1
|
||||
)
|
||||
dist_LDL_LDL, _ = tree_LDL.query(
|
||||
atoms_LDL, len(frame) // 2, distance_upper_bound=bins[-1] + 0.1
|
||||
)
|
||||
dist_HDL_LDL, _ = tree_LDL.query(
|
||||
atoms_HDL, len(frame) // 2, distance_upper_bound=bins[-1] + 0.1
|
||||
)
|
||||
|
||||
dist_ALL_ALL = dist_ALL_ALL[:, 1:].flatten()
|
||||
dist_HDL_HDL = dist_HDL_HDL[:, 1:].flatten()
|
||||
dist_LDL_LDL = dist_LDL_LDL[:, 1:].flatten()
|
||||
dist_HDL_LDL = dist_HDL_LDL.flatten()
|
||||
|
||||
hist_ALL_ALL = np.histogram(
|
||||
dist_ALL_ALL, bins=bins, range=(0, bins[-1]), density=False
|
||||
)[0]
|
||||
hist_HDL_HDL = np.histogram(
|
||||
dist_HDL_HDL, bins=bins, range=(0, bins[-1]), density=False
|
||||
)[0]
|
||||
hist_LDL_LDL = np.histogram(
|
||||
dist_LDL_LDL, bins=bins, range=(0, bins[-1]), density=False
|
||||
)[0]
|
||||
hist_HDL_LDL = np.histogram(
|
||||
dist_HDL_LDL, bins=bins, range=(0, bins[-1]), density=False
|
||||
)[0]
|
||||
|
||||
n = [len(atoms_ALL), len(atoms_HDL), len(atoms_LDL)] / np.prod(
|
||||
np.diag(frame.box)
|
||||
)
|
||||
|
||||
return (
|
||||
np.array(
|
||||
[
|
||||
hist_ALL_ALL / len(atoms_ALL),
|
||||
hist_HDL_HDL / len(atoms_HDL),
|
||||
hist_LDL_LDL / len(atoms_LDL),
|
||||
hist_HDL_LDL / len(atoms_HDL),
|
||||
]
|
||||
),
|
||||
n,
|
||||
)
|
||||
|
||||
start_frame = trajectory[int(len(trajectory) * skip)]
|
||||
upper_bound = round(np.min(np.diag(start_frame.box)) / 2 - 0.05, 1)
|
||||
bins = np.linspace(0, upper_bound, upper_bound * 500 + 1)
|
||||
frame_indices = np.unique(
|
||||
np.int_(np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments))
|
||||
)
|
||||
|
||||
gr = []
|
||||
ns = []
|
||||
for frame_index in frame_indices:
|
||||
hists, n = gr_frame(trajectory[frame_index], trajectory, bins)
|
||||
gr.append(hists)
|
||||
ns.append(n)
|
||||
|
||||
gr = np.mean(gr, axis=0)
|
||||
gr = gr / (4 / 3 * np.pi * bins[1:] ** 3 - 4 / 3 * np.pi * bins[:-1] ** 3)
|
||||
r = bins[1:] - (bins[1] - bins[0]) / 2
|
||||
n = np.mean(ns, axis=0)
|
||||
|
||||
return pd.DataFrame(
|
||||
{"r": r, "gr_ALL": [0], "gr_HDL": gr[1], "gr_LDL": gr[2], "gr_MIX": gr[3]}
|
||||
)
|
||||
|
||||
|
||||
def HDL_LDL_concentration(trajectory, segments=10000, skip=0):
|
||||
def HDL_LDL_concentration_frame(frame, trajectrory, bins):
|
||||
atoms_HDL, atoms_LDL = HDL_LDL_positions(frame, trajectory)
|
||||
atoms_PBC_HDL = pbc_points(atoms_HDL, frame.box, thickness=0.61)
|
||||
atoms_PBC_LDL = pbc_points(atoms_LDL, frame.box, thickness=0.61)
|
||||
tree_LDL = KDTree(atoms_PBC_LDL)
|
||||
tree_HDL = KDTree(atoms_PBC_HDL)
|
||||
dist_HDL_HDL, _ = tree_HDL.query(atoms_HDL, 31, distance_upper_bound=0.6)
|
||||
dist_HDL_LDL, _ = tree_LDL.query(atoms_HDL, 30, distance_upper_bound=0.6)
|
||||
HDL_near_HDL = np.sum(
|
||||
dist_HDL_HDL <= 0.5, axis=-1
|
||||
) # Ausgangsteilchen dazu zählen
|
||||
LDL_near_HDL = np.sum(dist_HDL_LDL <= 0.5, axis=-1)
|
||||
x_HDL = HDL_near_HDL / (HDL_near_HDL + LDL_near_HDL)
|
||||
x_HDL_dist = np.histogram(x_HDL, bins=bins, range=(0, bins[-1]), density=True)[
|
||||
0
|
||||
]
|
||||
dist_LDL_LDL, _ = tree_LDL.query(atoms_LDL, 31, distance_upper_bound=0.6)
|
||||
dist_LDL_HDL, _ = tree_HDL.query(atoms_LDL, 30, distance_upper_bound=0.6)
|
||||
LDL_near_LDL = np.sum(
|
||||
dist_LDL_LDL <= 0.5, axis=-1
|
||||
) # Ausgangsteilchen dazu zählen
|
||||
HDL_near_LDL = np.sum(dist_LDL_HDL <= 0.5, axis=-1)
|
||||
x_LDL = LDL_near_LDL / (LDL_near_LDL + HDL_near_LDL)
|
||||
x_LDL_dist = np.histogram(x_LDL, bins=bins, range=(0, bins[-1]), density=True)[
|
||||
0
|
||||
]
|
||||
return x_HDL_dist, x_LDL_dist
|
||||
|
||||
bins = np.linspace(0, 1, 21)
|
||||
x = bins[1:] - (bins[1] - bins[0]) / 2
|
||||
frame_indices = np.unique(
|
||||
np.int_(np.linspace(len(trajectory) * skip, len(trajectory) - 1, num=segments))
|
||||
)
|
||||
local_concentration_dist = np.array(
|
||||
[
|
||||
HDL_LDL_concentration_frame(trajectory[frame_index], trajectory, bins)
|
||||
for frame_index in frame_indices
|
||||
]
|
||||
)
|
||||
x_HDL = np.mean(local_concentration_dist[:, 0], axis=0)
|
||||
x_LDL = np.mean(local_concentration_dist[:, 1], axis=0)
|
||||
return pd.DataFrame({"x": x, "x_HDL": x_HDL, "x_LDL": x_LDL})
|
Loading…
Reference in New Issue
Block a user