Added Robins adjustments for FEL
This commit is contained in:
parent
b7bb8cb379
commit
c09549902a
@ -4,7 +4,6 @@ from typing import Optional
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.polynomial.polynomial import Polynomial as Poly
|
||||
import math
|
||||
from scipy.spatial import KDTree
|
||||
import pandas as pd
|
||||
import multiprocessing as mp
|
||||
@ -49,7 +48,7 @@ def _pbc_points_reduced(
|
||||
|
||||
def _build_tree(points, box, r_max, pore_geometry):
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
tree = KDTree(points % box, boxsize=box)
|
||||
points_pbc_index = None
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
@ -79,8 +78,7 @@ def occupation_matrix(
|
||||
z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
|
||||
bins = [x_bins, y_bins, z_bins]
|
||||
# Trajectory is split for parallel computing
|
||||
size = math.ceil(len(frame_indices) / nodes)
|
||||
indices = [frame_indices[i : i + size] for i in range(0, len(frame_indices), size)]
|
||||
indices = np.array_split(frame_indices, nodes)
|
||||
pool = mp.Pool(nodes)
|
||||
results = pool.map(
|
||||
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
|
||||
@ -274,7 +272,11 @@ def distance_resolved_energies(
|
||||
|
||||
|
||||
def find_energy_maxima(
|
||||
energy_df: pd.DataFrame, r_min: float, r_max: float
|
||||
energy_df: pd.DataFrame,
|
||||
r_min: float,
|
||||
r_max: float,
|
||||
r_eval: float = None,
|
||||
degree: int = 2,
|
||||
) -> pd.DataFrame:
|
||||
distances = []
|
||||
energies = []
|
||||
@ -283,6 +285,9 @@ def find_energy_maxima(
|
||||
x = np.array(data_d["r"])
|
||||
y = np.array(data_d["energy"])
|
||||
mask = (x >= r_min) * (x <= r_max)
|
||||
p3 = Poly.fit(x[mask], y[mask], deg=2)
|
||||
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
|
||||
p3 = Poly.fit(x[mask], y[mask], deg=degree)
|
||||
if r_eval is None:
|
||||
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
|
||||
else:
|
||||
energies.append(p3(r_eval))
|
||||
return pd.DataFrame({"d": distances, "energy": energies})
|
||||
|
Loading…
x
Reference in New Issue
Block a user