Moved KDTree build up in its own function and made find_maxima query for each point separately.
This commit is contained in:
parent
af3758cbef
commit
c89cead81c
@ -47,6 +47,21 @@ def _pbc_points_reduced(
|
||||
return coordinates_pbc, indices
|
||||
|
||||
|
||||
def _build_tree(points, box, r_max, pore_geometry):
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
points_pbc_index = None
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=r_max + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
return tree, points_pbc_index
|
||||
|
||||
|
||||
def occupation_matrix(
|
||||
trajectory: Coordinates,
|
||||
edge_length: float = 0.05,
|
||||
@ -113,23 +128,14 @@ def find_maxima(
|
||||
maxima_df = occupation_df.copy()
|
||||
maxima_df["maxima"] = None
|
||||
points = np.array(maxima_df[["x", "y", "z"]])
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
all_neighbors = tree.query_ball_point(points, radius)
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=radius + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
all_neighbors = tree.query_ball_point(points, radius)
|
||||
all_neighbors = points_pbc_index[all_neighbors]
|
||||
tree, points_pbc_index = _build_tree(points, box, radius, pore_geometry)
|
||||
for i in range(len(maxima_df)):
|
||||
if maxima_df.loc[i, "maxima"] is not None:
|
||||
continue
|
||||
neighbors = np.array(all_neighbors[i])
|
||||
maxima_pos = maxima_df.loc[i, ["x", "y", "z"]]
|
||||
neighbors = np.array(tree.query_ball_point(maxima_pos, radius))
|
||||
if points_pbc_index is not None:
|
||||
neighbors = points_pbc_index[neighbors]
|
||||
neighbors = neighbors[neighbors != i]
|
||||
if len(neighbors) == 0:
|
||||
maxima_df.loc[i, "maxima"] = True
|
||||
@ -154,16 +160,7 @@ def _calc_energies(
|
||||
nodes: int = 8,
|
||||
) -> NDArray:
|
||||
points = np.array(maxima_df[["x", "y", "z"]])
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=bins[-1] + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
tree, points_pbc_index = _build_tree(points, box, bins[-1], pore_geometry)
|
||||
maxima = maxima_df.loc[maxima_indices, ["x", "y", "z"]]
|
||||
maxima_occupations = np.array(maxima_df.loc[maxima_indices, "occupation"])
|
||||
num_of_neighbors = np.max(
|
||||
@ -187,7 +184,7 @@ def _calc_energies(
|
||||
all_occupied_bins_hist = []
|
||||
if distances.ndim == 1:
|
||||
current_distances = distances[1:][distances[1:] <= bins[-1]]
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
if points_pbc_index is None:
|
||||
current_indices = indices[1:][distances[1:] <= bins[-1]]
|
||||
else:
|
||||
current_indices = points_pbc_index[indices[1:][distances[1:] <= bins[-1]]]
|
||||
@ -201,7 +198,7 @@ def _calc_energies(
|
||||
return result
|
||||
for i, maxima_occupation in enumerate(maxima_occupations):
|
||||
current_distances = distances[i, 1:][distances[i, 1:] <= bins[-1]]
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
if points_pbc_index is None:
|
||||
current_indices = indices[i, 1:][distances[i, 1:] <= bins[-1]]
|
||||
else:
|
||||
current_indices = points_pbc_index[
|
||||
|
Loading…
x
Reference in New Issue
Block a user