Changed time_average to work similar to shifted_correlation
This commit is contained in:
parent
32e3541c4b
commit
cc3768925a
@ -1,3 +1,5 @@
|
||||
from typing import Callable, Optional
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike
|
||||
from scipy import spatial
|
||||
@ -17,8 +19,14 @@ from .pbc import pbc_diff, pbc_points
|
||||
from .logging import logger
|
||||
|
||||
|
||||
@autosave_data(nargs=2, kwargs_keys=("coordinates_b",), version="time_average-1")
|
||||
def time_average(function, coordinates, coordinates_b=None, pool=None):
|
||||
@autosave_data(nargs=2, kwargs_keys=("coordinates_b",))
|
||||
def time_average(
|
||||
function: Callable,
|
||||
coordinates: Coordinates,
|
||||
coordinates_b: Optional[Coordinates] = None,
|
||||
skip: float = 0.1,
|
||||
segments: int = 100,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute the time average of a function.
|
||||
|
||||
@ -27,35 +35,23 @@ def time_average(function, coordinates, coordinates_b=None, pool=None):
|
||||
The function that will be averaged, it has to accept exactly one argument
|
||||
which is the current atom set
|
||||
coordinates: The coordinates object of the simulation
|
||||
pool (multiprocessing.Pool, opt.):
|
||||
A multiprocessing pool which will be used for cocurrent calculation of the
|
||||
averaged function
|
||||
|
||||
coordinates_b: Additional coordinates object of the simulation
|
||||
skip:
|
||||
segments:
|
||||
"""
|
||||
if pool is not None:
|
||||
_map = pool.imap
|
||||
frame_indices = np.unique(
|
||||
np.int_(
|
||||
np.linspace(len(coordinates) * skip, len(coordinates) - 1, num=segments)
|
||||
)
|
||||
)
|
||||
if coordinates_b is None:
|
||||
result = [function(coordinates[frame_index]) for frame_index in frame_indices]
|
||||
else:
|
||||
_map = map
|
||||
|
||||
number_of_averages = 0
|
||||
result = 0
|
||||
|
||||
if coordinates_b is not None:
|
||||
if coordinates._slice != coordinates_b._slice:
|
||||
logger.warning("Different slice for coordinates and coordinates_b.")
|
||||
coordinate_iter = (iter(coordinates), iter(coordinates_b))
|
||||
else:
|
||||
coordinate_iter = (iter(coordinates),)
|
||||
|
||||
evaluated = _map(function, *coordinate_iter)
|
||||
|
||||
for ev in evaluated:
|
||||
number_of_averages += 1
|
||||
result += ev
|
||||
if number_of_averages % 100 == 0:
|
||||
logger.debug("time_average: %d", number_of_averages)
|
||||
|
||||
return result / number_of_averages
|
||||
result = [
|
||||
function(coordinates[frame_index], coordinates_b[frame_index])
|
||||
for frame_index in frame_indices
|
||||
]
|
||||
return np.mean(result, axis=0)
|
||||
|
||||
|
||||
def time_histogram(function, coordinates, bins, hist_range, pool=None):
|
||||
|
Loading…
x
Reference in New Issue
Block a user