Used black for formatting.
This commit is contained in:
parent
a2164507d5
commit
ef125c2a89
@ -11,11 +11,19 @@ from . import autosave
|
||||
from . import reader
|
||||
from .logging import logger
|
||||
|
||||
__version__ = '23.4'
|
||||
__version__ = "23.6"
|
||||
|
||||
|
||||
def open(directory='', topology='*.tpr', trajectory='*.xtc', cached=False,
|
||||
nojump=False, index_file=None, charges=None, masses=None):
|
||||
def open(
|
||||
directory="",
|
||||
topology="*.tpr",
|
||||
trajectory="*.xtc",
|
||||
cached=False,
|
||||
nojump=False,
|
||||
index_file=None,
|
||||
charges=None,
|
||||
masses=None,
|
||||
):
|
||||
"""
|
||||
Open a simulation from a directory.
|
||||
|
||||
@ -51,8 +59,8 @@ def open(directory='', topology='*.tpr', trajectory='*.xtc', cached=False,
|
||||
"""
|
||||
top_glob = glob(os.path.join(directory, topology), recursive=True)
|
||||
if top_glob is not None and len(top_glob) == 1:
|
||||
top_file, = top_glob
|
||||
logger.info('Loading topology: {}'.format(top_file))
|
||||
(top_file,) = top_glob
|
||||
logger.info("Loading topology: {}".format(top_file))
|
||||
if index_file is not None:
|
||||
index_glob = glob(os.path.join(directory, index_file), recursive=True)
|
||||
if index_glob is not None:
|
||||
@ -60,19 +68,23 @@ def open(directory='', topology='*.tpr', trajectory='*.xtc', cached=False,
|
||||
else:
|
||||
index_file = None
|
||||
else:
|
||||
raise FileNotFoundError('Topology file could not be identified.')
|
||||
raise FileNotFoundError("Topology file could not be identified.")
|
||||
|
||||
traj_glob = glob(os.path.join(directory, trajectory), recursive=True)
|
||||
if traj_glob is not None and len(traj_glob) == 1:
|
||||
traj_file = traj_glob[0]
|
||||
logger.info('Loading trajectory: {}'.format(traj_file))
|
||||
logger.info("Loading trajectory: {}".format(traj_file))
|
||||
else:
|
||||
raise FileNotFoundError('Trajectory file could not be identified.')
|
||||
|
||||
raise FileNotFoundError("Trajectory file could not be identified.")
|
||||
|
||||
atom_set, frames = reader.open_with_mdanalysis(
|
||||
top_file, traj_file, cached=cached, index_file=index_file,
|
||||
charges=charges, masses=masses
|
||||
)
|
||||
top_file,
|
||||
traj_file,
|
||||
cached=cached,
|
||||
index_file=index_file,
|
||||
charges=charges,
|
||||
masses=masses,
|
||||
)
|
||||
coords = coordinates.Coordinates(frames, atom_subset=atom_set)
|
||||
if nojump:
|
||||
try:
|
||||
@ -81,11 +93,12 @@ def open(directory='', topology='*.tpr', trajectory='*.xtc', cached=False,
|
||||
reader.generate_nojump_matrixes(coords)
|
||||
return coords
|
||||
|
||||
|
||||
def open_energy(file, energies=None):
|
||||
"""Reads an gromacs energy file and output the data in a pandas DataFrame.
|
||||
Args:
|
||||
file: Filename of the energy file
|
||||
energies (opt.): Specify energies to extract from the energy file
|
||||
Args:
|
||||
file: Filename of the energy file
|
||||
energies (opt.): Specify energies to extract from the energy file
|
||||
"""
|
||||
df = reader.energy_reader(file, energies=energies)
|
||||
return df
|
||||
|
@ -6,20 +6,23 @@ from .checksum import checksum
|
||||
import numpy as np
|
||||
|
||||
import scipy
|
||||
if scipy.version.version >= '0.17.0':
|
||||
|
||||
if scipy.version.version >= "0.17.0":
|
||||
from scipy.spatial import cKDTree as KDTree
|
||||
else:
|
||||
from scipy.spatial import KDTree
|
||||
|
||||
|
||||
def compare_regex(list, exp):
|
||||
"""
|
||||
Compare a list of strings with a regular expression.
|
||||
"""
|
||||
if not exp.endswith('$'):
|
||||
exp += '$'
|
||||
if not exp.endswith("$"):
|
||||
exp += "$"
|
||||
regex = re.compile(exp)
|
||||
return np.array([regex.match(s) is not None for s in list])
|
||||
|
||||
|
||||
class Atoms:
|
||||
"""
|
||||
Basic container class for atom information.
|
||||
@ -62,8 +65,7 @@ class AtomMismatch(Exception):
|
||||
|
||||
|
||||
class AtomSubset:
|
||||
|
||||
def __init__(self, atoms, selection=None, description=''):
|
||||
def __init__(self, atoms, selection=None, description=""):
|
||||
"""
|
||||
Args:
|
||||
atoms: Base atom object
|
||||
@ -71,7 +73,7 @@ class AtomSubset:
|
||||
description (opt.): Descriptive string of the subset.
|
||||
"""
|
||||
if selection is None:
|
||||
selection = np.ones(len(atoms), dtype='bool')
|
||||
selection = np.ones(len(atoms), dtype="bool")
|
||||
self.selection = selection
|
||||
self.atoms = atoms
|
||||
self.description = description
|
||||
@ -92,26 +94,28 @@ class AtomSubset:
|
||||
new_subset &= AtomSubset(
|
||||
self.atoms,
|
||||
selection=compare_regex(self.atoms.atom_names, atom_name),
|
||||
description=atom_name
|
||||
description=atom_name,
|
||||
)
|
||||
|
||||
if residue_name is not None:
|
||||
new_subset &= AtomSubset(
|
||||
self.atoms,
|
||||
selection=compare_regex(self.atoms.residue_names, residue_name),
|
||||
description=residue_name
|
||||
description=residue_name,
|
||||
)
|
||||
|
||||
if residue_id is not None:
|
||||
if np.iterable(residue_id):
|
||||
selection = np.zeros(len(self.selection), dtype='bool')
|
||||
selection = np.zeros(len(self.selection), dtype="bool")
|
||||
selection[np.in1d(self.atoms.residue_ids, residue_id)] = True
|
||||
new_subset &= AtomSubset(self.atoms, selection)
|
||||
else:
|
||||
new_subset &= AtomSubset(self.atoms, self.atoms.residue_ids == residue_id)
|
||||
new_subset &= AtomSubset(
|
||||
self.atoms, self.atoms.residue_ids == residue_id
|
||||
)
|
||||
|
||||
if indices is not None:
|
||||
selection = np.zeros(len(self.selection), dtype='bool')
|
||||
selection = np.zeros(len(self.selection), dtype="bool")
|
||||
selection[indices] = True
|
||||
new_subset &= AtomSubset(self.atoms, selection)
|
||||
return new_subset
|
||||
@ -142,15 +146,15 @@ class AtomSubset:
|
||||
def __and__(self, other):
|
||||
if self.atoms != other.atoms:
|
||||
raise AtomMismatch
|
||||
selection = (self.selection & other.selection)
|
||||
description = '{}_{}'.format(self.description, other.description).strip('_')
|
||||
selection = self.selection & other.selection
|
||||
description = "{}_{}".format(self.description, other.description).strip("_")
|
||||
return AtomSubset(self.atoms, selection, description)
|
||||
|
||||
def __or__(self, other):
|
||||
if self.atoms != other.atoms:
|
||||
raise AtomMismatch
|
||||
selection = (self.selection | other.selection)
|
||||
description = '{}_{}'.format(self.description, other.description).strip('_')
|
||||
selection = self.selection | other.selection
|
||||
description = "{}_{}".format(self.description, other.description).strip("_")
|
||||
return AtomSubset(self.atoms, selection, description)
|
||||
|
||||
def __invert__(self):
|
||||
@ -158,14 +162,20 @@ class AtomSubset:
|
||||
return AtomSubset(self.atoms, selection, self.description)
|
||||
|
||||
def __repr__(self):
|
||||
return 'Subset of Atoms ({} of {})'.format(len(self.atoms.residue_names[self.selection]),
|
||||
len(self.atoms))
|
||||
return "Subset of Atoms ({} of {})".format(
|
||||
len(self.atoms.residue_names[self.selection]), len(self.atoms)
|
||||
)
|
||||
|
||||
@property
|
||||
def summary(self):
|
||||
return "\n".join(["{}{} {}".format(resid, resname, atom_names)
|
||||
for resid, resname, atom_names in zip(self.residue_ids, self.residue_names, self.atom_names)
|
||||
])
|
||||
return "\n".join(
|
||||
[
|
||||
"{}{} {}".format(resid, resname, atom_names)
|
||||
for resid, resname, atom_names in zip(
|
||||
self.residue_ids, self.residue_names, self.atom_names
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
def __checksum__(self):
|
||||
return checksum(self.description)
|
||||
@ -182,35 +192,32 @@ def gyration_radius(position):
|
||||
r"""
|
||||
Calculates a list of all radii of gyration of all molecules given in the coordinate frame,
|
||||
weighted with the masses of the individual atoms.
|
||||
|
||||
|
||||
Args:
|
||||
position: Coordinate frame object
|
||||
|
||||
|
||||
..math::
|
||||
R_G = \left(\frac{\sum_{i=1}^{n} m_i |\vec{r_i} - \vec{r_{COM}}|^2 }{\sum_{i=1}^{n} m_i }
|
||||
R_G = \left(\frac{\sum_{i=1}^{n} m_i |\vec{r_i} - \vec{r_{COM}}|^2 }{\sum_{i=1}^{n} m_i }
|
||||
\rigth)^{\frac{1}{2}}
|
||||
"""
|
||||
|
||||
|
||||
|
||||
gyration_radii = np.array([])
|
||||
|
||||
|
||||
for resid in np.unique(position.residue_ids):
|
||||
pos = position.whole[position.residue_ids==resid]
|
||||
mass = position.masses[position.residue_ids==resid][:,np.newaxis]
|
||||
COM = center_of_mass(pos,mass)
|
||||
r_sq = ((pbc_diff(pos,COM,pos.box.diagonal()))**2).sum(1)[:,np.newaxis]
|
||||
g_radius = ((r_sq*mass).sum()/mass.sum())**(0.5)
|
||||
|
||||
gyration_radii = np.append(gyration_radii,g_radius)
|
||||
pos = position.whole[position.residue_ids == resid]
|
||||
mass = position.masses[position.residue_ids == resid][:, np.newaxis]
|
||||
COM = center_of_mass(pos, mass)
|
||||
r_sq = ((pbc_diff(pos, COM, pos.box.diagonal())) ** 2).sum(1)[:, np.newaxis]
|
||||
g_radius = ((r_sq * mass).sum() / mass.sum()) ** (0.5)
|
||||
|
||||
gyration_radii = np.append(gyration_radii, g_radius)
|
||||
|
||||
return gyration_radii
|
||||
|
||||
|
||||
def layer_of_atoms(atoms,
|
||||
thickness,
|
||||
plane_offset=np.array([0, 0, 0]),
|
||||
plane_normal=np.array([1, 0, 0])):
|
||||
|
||||
def layer_of_atoms(
|
||||
atoms, thickness, plane_offset=np.array([0, 0, 0]), plane_normal=np.array([1, 0, 0])
|
||||
):
|
||||
p_ = atoms - plane_offset
|
||||
distance = np.dot(p_, plane_normal)
|
||||
|
||||
@ -227,6 +234,7 @@ def distance_to_atoms(ref, atoms, box=None):
|
||||
out[i] = np.sqrt(diff)
|
||||
return out
|
||||
|
||||
|
||||
def distance_to_atoms_cKDtree(ref, atoms, box=None, thickness=None):
|
||||
"""
|
||||
Get the minimal distance from atoms to ref.
|
||||
@ -236,19 +244,25 @@ def distance_to_atoms_cKDtree(ref, atoms, box=None, thickness=None):
|
||||
If box is not given then periodic boundary conditions are not applied!
|
||||
"""
|
||||
if thickness == None:
|
||||
thickness = box/5
|
||||
thickness = box / 5
|
||||
if box is not None:
|
||||
start_coords = np.copy(atoms)%box
|
||||
all_frame_coords = pbc_points(ref, box, thickness = thickness)
|
||||
start_coords = np.copy(atoms) % box
|
||||
all_frame_coords = pbc_points(ref, box, thickness=thickness)
|
||||
else:
|
||||
start_coords = atoms
|
||||
all_frame_coords = ref
|
||||
|
||||
|
||||
tree = spatial.cKDTree(all_frame_coords)
|
||||
return tree.query(start_coords)[0]
|
||||
|
||||
|
||||
def next_neighbors(atoms, query_atoms=None, number_of_neighbors=1, distance_upper_bound=np.inf, distinct=False):
|
||||
def next_neighbors(
|
||||
atoms,
|
||||
query_atoms=None,
|
||||
number_of_neighbors=1,
|
||||
distance_upper_bound=np.inf,
|
||||
distinct=False,
|
||||
):
|
||||
"""
|
||||
Find the N next neighbors of a set of atoms.
|
||||
|
||||
@ -265,6 +279,9 @@ def next_neighbors(atoms, query_atoms=None, number_of_neighbors=1, distance_uppe
|
||||
query_atoms = atoms
|
||||
elif not distinct:
|
||||
dnn = 1
|
||||
dist, indices = tree.query(query_atoms, number_of_neighbors + dnn,
|
||||
distance_upper_bound=distance_upper_bound)
|
||||
dist, indices = tree.query(
|
||||
query_atoms,
|
||||
number_of_neighbors + dnn,
|
||||
distance_upper_bound=distance_upper_bound,
|
||||
)
|
||||
return indices[:, dnn:]
|
||||
|
@ -9,7 +9,7 @@ from .logging import logger
|
||||
autosave_directory = None
|
||||
load_autosave_data = False
|
||||
verbose_print = True
|
||||
user_autosave_directory = os.path.join(os.environ['HOME'], '.mdevaluate/autosave')
|
||||
user_autosave_directory = os.path.join(os.environ["HOME"], ".mdevaluate/autosave")
|
||||
|
||||
|
||||
def notify(msg):
|
||||
@ -33,7 +33,7 @@ def enable(dir, load_data=True, verbose=True):
|
||||
# os.makedirs(absolute, exist_ok=True)
|
||||
autosave_directory = dir
|
||||
load_autosave_data = load_data
|
||||
notify('Enabled autosave in directory: {}'.format(autosave_directory))
|
||||
notify("Enabled autosave in directory: {}".format(autosave_directory))
|
||||
|
||||
|
||||
def disable():
|
||||
@ -58,6 +58,7 @@ class disabled:
|
||||
|
||||
# After the context is exited, autosave will work as before.
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
self._autosave_directory = autosave_directory
|
||||
disable()
|
||||
@ -76,8 +77,12 @@ def get_directory(reader):
|
||||
except PermissionError:
|
||||
pass
|
||||
if not os.access(savedir, os.W_OK):
|
||||
savedir = os.path.join(user_autosave_directory, savedir.lstrip('/'))
|
||||
logger.info('Switched autosave directory to {}, since original location is not writeable.'.format(savedir))
|
||||
savedir = os.path.join(user_autosave_directory, savedir.lstrip("/"))
|
||||
logger.info(
|
||||
"Switched autosave directory to {}, since original location is not writeable.".format(
|
||||
savedir
|
||||
)
|
||||
)
|
||||
os.makedirs(savedir, exist_ok=True)
|
||||
return savedir
|
||||
|
||||
@ -86,17 +91,17 @@ def get_filename(function, checksum, description, *args):
|
||||
"""Get the autosave filename for a specific function call."""
|
||||
func_desc = function.__name__
|
||||
for arg in args:
|
||||
if hasattr(arg, '__name__'):
|
||||
func_desc += '_{}'.format(arg.__name__)
|
||||
if hasattr(arg, "__name__"):
|
||||
func_desc += "_{}".format(arg.__name__)
|
||||
elif isinstance(arg, functools.partial):
|
||||
func_desc += '_{}'.format(arg.func.__name__)
|
||||
func_desc += "_{}".format(arg.func.__name__)
|
||||
|
||||
if hasattr(arg, 'frames'):
|
||||
if hasattr(arg, "frames"):
|
||||
savedir = get_directory(arg.frames)
|
||||
|
||||
if hasattr(arg, 'description') and arg.description != '':
|
||||
description += '_{}'.format(arg.description)
|
||||
filename = '{}_{}.npz'.format(func_desc.strip('_'), description.strip('_'))
|
||||
if hasattr(arg, "description") and arg.description != "":
|
||||
description += "_{}".format(arg.description)
|
||||
filename = "{}_{}.npz".format(func_desc.strip("_"), description.strip("_"))
|
||||
return os.path.join(savedir, filename)
|
||||
|
||||
|
||||
@ -105,14 +110,14 @@ def verify_file(filename, checksum):
|
||||
file_checksum = 0
|
||||
if os.path.exists(filename):
|
||||
data = np.load(filename, allow_pickle=True)
|
||||
if 'checksum' in data:
|
||||
file_checksum = data['checksum']
|
||||
if "checksum" in data:
|
||||
file_checksum = data["checksum"]
|
||||
return file_checksum == checksum
|
||||
|
||||
|
||||
def save_data(filename, checksum, data):
|
||||
"""Save data and checksum to a file."""
|
||||
notify('Saving result to file: {}'.format(filename))
|
||||
notify("Saving result to file: {}".format(filename))
|
||||
try:
|
||||
data = np.array(data)
|
||||
except ValueError:
|
||||
@ -125,13 +130,13 @@ def save_data(filename, checksum, data):
|
||||
|
||||
def load_data(filename):
|
||||
"""Load data from a npz file."""
|
||||
notify('Loading result from file: {}'.format(filename))
|
||||
notify("Loading result from file: {}".format(filename))
|
||||
fdata = np.load(filename, allow_pickle=True)
|
||||
if 'data' in fdata:
|
||||
return fdata['data']
|
||||
if "data" in fdata:
|
||||
return fdata["data"]
|
||||
else:
|
||||
data = tuple(fdata[k] for k in sorted(fdata) if ('arr' in k))
|
||||
save_data(filename, fdata['checksum'], data)
|
||||
data = tuple(fdata[k] for k in sorted(fdata) if ("arr" in k))
|
||||
save_data(filename, fdata["checksum"], data)
|
||||
return data
|
||||
|
||||
|
||||
@ -142,10 +147,11 @@ def autosave_data(nargs, kwargs_keys=None, version=None):
|
||||
Args:
|
||||
nargs: Number of args which are relevant for the calculation.
|
||||
kwargs_keys (opt.): List of keyword arguments which are relevant for the calculation.
|
||||
version (opt.):
|
||||
version (opt.):
|
||||
An optional version number of the decorated function, which replaces the checksum of
|
||||
the function code, hence the checksum does not depend on the function code.
|
||||
"""
|
||||
|
||||
def decorator_function(function):
|
||||
# make sure too include names of positional arguments in kwargs_keys,
|
||||
# sice otherwise they will be ignored if passed via keyword.
|
||||
@ -154,8 +160,8 @@ def autosave_data(nargs, kwargs_keys=None, version=None):
|
||||
|
||||
@functools.wraps(function)
|
||||
def autosave(*args, **kwargs):
|
||||
description = kwargs.pop('description', '')
|
||||
autoload = kwargs.pop('autoload', True) and load_autosave_data
|
||||
description = kwargs.pop("description", "")
|
||||
autoload = kwargs.pop("autoload", True) and load_autosave_data
|
||||
if autosave_directory is not None:
|
||||
relevant_args = list(args[:nargs])
|
||||
if kwargs_keys is not None:
|
||||
@ -170,7 +176,9 @@ def autosave_data(nargs, kwargs_keys=None, version=None):
|
||||
legacy_csum = checksum(function, *relevant_args)
|
||||
|
||||
filename = get_filename(function, csum, description, *relevant_args)
|
||||
if autoload and (verify_file(filename, csum) or verify_file(filename, legacy_csum)):
|
||||
if autoload and (
|
||||
verify_file(filename, csum) or verify_file(filename, legacy_csum)
|
||||
):
|
||||
result = load_data(filename)
|
||||
else:
|
||||
result = function(*args, **kwargs)
|
||||
@ -179,5 +187,7 @@ def autosave_data(nargs, kwargs_keys=None, version=None):
|
||||
result = function(*args, **kwargs)
|
||||
|
||||
return result
|
||||
|
||||
return autosave
|
||||
|
||||
return decorator_function
|
||||
|
@ -1,4 +1,3 @@
|
||||
|
||||
import functools
|
||||
import hashlib
|
||||
from .logging import logger
|
||||
@ -14,6 +13,7 @@ SALT = 42
|
||||
|
||||
def version(version_nr, calls=[]):
|
||||
"""Function decorator that assigns a custom checksum to a function."""
|
||||
|
||||
def decorator(func):
|
||||
cs = checksum(func.__name__, version_nr, *calls)
|
||||
func.__checksum__ = lambda: cs
|
||||
@ -23,18 +23,19 @@ def version(version_nr, calls=[]):
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return wrapped
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def strip_comments(s):
|
||||
"""Strips comment lines and docstring from Python source string."""
|
||||
o = ''
|
||||
o = ""
|
||||
in_docstring = False
|
||||
for l in s.split('\n'):
|
||||
if l.strip().startswith(('#', '"', "'")) or in_docstring:
|
||||
for l in s.split("\n"):
|
||||
if l.strip().startswith(("#", '"', "'")) or in_docstring:
|
||||
in_docstring = l.strip().startswith(('"""', "'''")) + in_docstring == 1
|
||||
continue
|
||||
o += l + '\n'
|
||||
o += l + "\n"
|
||||
return o
|
||||
|
||||
|
||||
@ -42,7 +43,7 @@ def checksum(*args, csum=None):
|
||||
"""
|
||||
Calculate a checksum of any object, by sha1 hash.
|
||||
|
||||
Input for the hash are some salt bytes and the byte encoding of a string
|
||||
Input for the hash are some salt bytes and the byte encoding of a string
|
||||
that depends on the object and its type:
|
||||
|
||||
- If a method __checksum__ is available, it's return value is converted to bytes
|
||||
@ -58,8 +59,8 @@ def checksum(*args, csum=None):
|
||||
csum.update(str(SALT).encode())
|
||||
|
||||
for arg in args:
|
||||
if hasattr(arg, '__checksum__'):
|
||||
logger.debug('Checksum via __checksum__: %s', str(arg))
|
||||
if hasattr(arg, "__checksum__"):
|
||||
logger.debug("Checksum via __checksum__: %s", str(arg))
|
||||
csum.update(str(arg.__checksum__()).encode())
|
||||
elif isinstance(arg, bytes):
|
||||
csum.update(arg)
|
||||
@ -74,7 +75,7 @@ def checksum(*args, csum=None):
|
||||
if v is not arg:
|
||||
checksum(v, csum=csum)
|
||||
elif isinstance(arg, functools.partial):
|
||||
logger.debug('Checksum via partial for %s', str(arg))
|
||||
logger.debug("Checksum via partial for %s", str(arg))
|
||||
checksum(arg.func, csum=csum)
|
||||
for x in arg.args:
|
||||
checksum(x, csum=csum)
|
||||
@ -84,8 +85,7 @@ def checksum(*args, csum=None):
|
||||
elif isinstance(arg, np.ndarray):
|
||||
csum.update(arg.tobytes())
|
||||
else:
|
||||
logger.debug('Checksum via str for %s', str(arg))
|
||||
logger.debug("Checksum via str for %s", str(arg))
|
||||
csum.update(str(arg).encode())
|
||||
|
||||
return int.from_bytes(csum.digest(), 'big')
|
||||
|
||||
return int.from_bytes(csum.digest(), "big")
|
||||
|
@ -6,30 +6,32 @@ from . import open as md_open
|
||||
def run(*args, **kwargs):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'xtcfile',
|
||||
help='The xtc file to index.',
|
||||
"xtcfile",
|
||||
help="The xtc file to index.",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--tpr',
|
||||
help='The tprfile of the trajectory.',
|
||||
dest='tpr', default=None
|
||||
"--tpr", help="The tprfile of the trajectory.", dest="tpr", default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
'--nojump',
|
||||
help='Generate Nojump Matrices, requires a tpr file.',
|
||||
dest='nojump', action='store_true', default=False
|
||||
"--nojump",
|
||||
help="Generate Nojump Matrices, requires a tpr file.",
|
||||
dest="nojump",
|
||||
action="store_true",
|
||||
default=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
'--debug',
|
||||
help='Set logging level to debug.',
|
||||
dest='debug', action='store_true', default=False
|
||||
"--debug",
|
||||
help="Set logging level to debug.",
|
||||
dest="debug",
|
||||
action="store_true",
|
||||
default=False,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
if args.debug:
|
||||
logging.setlevel('DEBUG')
|
||||
logging.setlevel("DEBUG")
|
||||
|
||||
md_open('', trajectory=args.xtcfile, topology=args.tpr, nojump=args.nojump)
|
||||
md_open("", trajectory=args.xtcfile, topology=args.tpr, nojump=args.nojump)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
|
@ -31,14 +31,14 @@ def rotate_axis(coords, axis):
|
||||
# return theta/pi, rotation_axis
|
||||
|
||||
ux, uy, uz = rotation_axis
|
||||
cross_matrix = np.array([
|
||||
[0, -uz, uy],
|
||||
[uz, 0, -ux],
|
||||
[-uy, ux, 0]
|
||||
])
|
||||
rotation_matrix = np.cos(theta) * np.identity(len(axis)) \
|
||||
+ (1 - np.cos(theta)) * rotation_axis.reshape(-1, 1) @ rotation_axis.reshape(1, -1) \
|
||||
cross_matrix = np.array([[0, -uz, uy], [uz, 0, -ux], [-uy, ux, 0]])
|
||||
rotation_matrix = (
|
||||
np.cos(theta) * np.identity(len(axis))
|
||||
+ (1 - np.cos(theta))
|
||||
* rotation_axis.reshape(-1, 1)
|
||||
@ rotation_axis.reshape(1, -1)
|
||||
+ np.sin(theta) * cross_matrix
|
||||
)
|
||||
|
||||
if len(coords.shape) == 2:
|
||||
rotated = np.array([rotation_matrix @ xyz for xyz in coords])
|
||||
@ -54,12 +54,12 @@ def spherical_radius(frame, origin=None):
|
||||
"""
|
||||
if origin is None:
|
||||
origin = frame.box.diagonal() / 2
|
||||
return ((frame - origin)**2).sum(axis=-1)**0.5
|
||||
return ((frame - origin) ** 2).sum(axis=-1) ** 0.5
|
||||
|
||||
|
||||
def polar_coordinates(x, y):
|
||||
"""Convert cartesian to polar coordinates."""
|
||||
radius = (x**2 + y**2)**0.5
|
||||
radius = (x**2 + y**2) ** 0.5
|
||||
phi = np.arctan2(y, x)
|
||||
return radius, phi
|
||||
|
||||
@ -67,11 +67,11 @@ def polar_coordinates(x, y):
|
||||
def spherical_coordinates(x, y, z):
|
||||
"""Convert cartesian to spherical coordinates."""
|
||||
xy, phi = polar_coordinates(x, y)
|
||||
radius = (x**2 + y**2 + z**2)**0.5
|
||||
radius = (x**2 + y**2 + z**2) ** 0.5
|
||||
theta = np.arccos(z / radius)
|
||||
return radius, phi, theta
|
||||
|
||||
|
||||
|
||||
def radial_selector(frame, coordinates, rmin, rmax):
|
||||
"""
|
||||
Return a selection of all atoms with radius in the interval [rmin, rmax].
|
||||
@ -103,8 +103,7 @@ def spatial_selector(frame, transform, rmin, rmax):
|
||||
|
||||
|
||||
class CoordinateFrame(np.ndarray):
|
||||
|
||||
_known_modes = ('pbc', 'whole', 'nojump')
|
||||
_known_modes = ("pbc", "whole", "nojump")
|
||||
|
||||
@property
|
||||
def box(self):
|
||||
@ -144,33 +143,46 @@ class CoordinateFrame(np.ndarray):
|
||||
|
||||
@property
|
||||
def selection(self):
|
||||
return self.coordinates.atom_subset.selection
|
||||
|
||||
return self.coordinates.atom_subset.selection
|
||||
|
||||
@property
|
||||
def whole(self):
|
||||
frame = whole(self)
|
||||
frame.mode = 'whole'
|
||||
frame.mode = "whole"
|
||||
return frame
|
||||
|
||||
@property
|
||||
def pbc(self):
|
||||
frame = self % self.box.diagonal()
|
||||
frame.mode = 'pbc'
|
||||
frame.mode = "pbc"
|
||||
return frame
|
||||
|
||||
@property
|
||||
def nojump(self):
|
||||
if self.mode != 'nojump':
|
||||
if self.mode != "nojump":
|
||||
if self.mode is not None:
|
||||
logger.warn('Combining Nojump with other Coordinate modes is not supported and may cause unexpected results.')
|
||||
logger.warn(
|
||||
"Combining Nojump with other Coordinate modes is not supported and may cause unexpected results."
|
||||
)
|
||||
frame = nojump(self)
|
||||
frame.mode = 'nojump'
|
||||
frame.mode = "nojump"
|
||||
return frame
|
||||
else:
|
||||
return self
|
||||
|
||||
def __new__(subtype, shape, dtype=float, buffer=None, offset=0, strides=None, order=None,
|
||||
coordinates=None, step=None, box=None, mode=None):
|
||||
def __new__(
|
||||
subtype,
|
||||
shape,
|
||||
dtype=float,
|
||||
buffer=None,
|
||||
offset=0,
|
||||
strides=None,
|
||||
order=None,
|
||||
coordinates=None,
|
||||
step=None,
|
||||
box=None,
|
||||
mode=None,
|
||||
):
|
||||
obj = np.ndarray.__new__(subtype, shape, dtype, buffer, offset, strides)
|
||||
|
||||
obj.coordinates = coordinates
|
||||
@ -182,11 +194,11 @@ class CoordinateFrame(np.ndarray):
|
||||
if obj is None:
|
||||
return
|
||||
|
||||
self.coordinates = getattr(obj, 'coordinates', None)
|
||||
self.step = getattr(obj, 'step', None)
|
||||
self.mode = getattr(obj, 'mode', None)
|
||||
if hasattr(obj, 'reference'):
|
||||
self.reference = getattr(obj, 'reference')
|
||||
self.coordinates = getattr(obj, "coordinates", None)
|
||||
self.step = getattr(obj, "step", None)
|
||||
self.mode = getattr(obj, "mode", None)
|
||||
if hasattr(obj, "reference"):
|
||||
self.reference = getattr(obj, "reference")
|
||||
|
||||
|
||||
class Coordinates:
|
||||
@ -198,22 +210,26 @@ class Coordinates:
|
||||
|
||||
def get_mode(self, mode):
|
||||
if self.atom_subset is not None:
|
||||
return Coordinates(frames=self.frames, atom_subset=self.atom_subset, mode=mode)[self._slice]
|
||||
return Coordinates(
|
||||
frames=self.frames, atom_subset=self.atom_subset, mode=mode
|
||||
)[self._slice]
|
||||
else:
|
||||
return Coordinates(frames=self.frames, atom_filter=self.atom_filter, mode=mode)[self._slice]
|
||||
return Coordinates(
|
||||
frames=self.frames, atom_filter=self.atom_filter, mode=mode
|
||||
)[self._slice]
|
||||
|
||||
@property
|
||||
def pbc(self):
|
||||
return self.get_mode('pbc')
|
||||
|
||||
return self.get_mode("pbc")
|
||||
|
||||
@property
|
||||
def whole(self):
|
||||
return self.get_mode('whole')
|
||||
|
||||
return self.get_mode("whole")
|
||||
|
||||
@property
|
||||
def nojump(self):
|
||||
return self.get_mode('nojump')
|
||||
|
||||
return self.get_mode("nojump")
|
||||
|
||||
@property
|
||||
def mode(self):
|
||||
return self._mode
|
||||
@ -221,12 +237,17 @@ class Coordinates:
|
||||
@mode.setter
|
||||
def mode(self, val):
|
||||
if val in CoordinateFrame._known_modes:
|
||||
logger.warn('Changing the Coordinates mode directly is deprecated. Use Coordinates.%s instead, which returns a copy.', val)
|
||||
logger.warn(
|
||||
"Changing the Coordinates mode directly is deprecated. Use Coordinates.%s instead, which returns a copy.",
|
||||
val,
|
||||
)
|
||||
self._mode = val
|
||||
else:
|
||||
raise UnknownCoordinatesMode('No such mode: {}'.format(val))
|
||||
raise UnknownCoordinatesMode("No such mode: {}".format(val))
|
||||
|
||||
def __init__(self, frames, atom_filter=None, atom_subset: AtomSubset=None, mode=None):
|
||||
def __init__(
|
||||
self, frames, atom_filter=None, atom_subset: AtomSubset = None, mode=None
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
frames: The trajectory reader
|
||||
@ -241,7 +262,9 @@ class Coordinates:
|
||||
self._mode = mode
|
||||
self.frames = frames
|
||||
self._slice = slice(None)
|
||||
assert atom_filter is None or atom_subset is None, "Cannot use both: subset and filter"
|
||||
assert (
|
||||
atom_filter is None or atom_subset is None
|
||||
), "Cannot use both: subset and filter"
|
||||
|
||||
if atom_filter is not None:
|
||||
self.atom_filter = atom_filter
|
||||
@ -258,7 +281,9 @@ class Coordinates:
|
||||
"""Returns the fnr-th frame."""
|
||||
try:
|
||||
if self.atom_filter is not None:
|
||||
frame = self.frames[fnr].positions[self.atom_filter].view(CoordinateFrame)
|
||||
frame = (
|
||||
self.frames[fnr].positions[self.atom_filter].view(CoordinateFrame)
|
||||
)
|
||||
else:
|
||||
frame = self.frames.__getitem__(fnr).positions.view(CoordinateFrame)
|
||||
frame.coordinates = self
|
||||
@ -272,7 +297,7 @@ class Coordinates:
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clears the frame cache, if it is enabled."""
|
||||
if hasattr(self.get_frame, 'clear_cache'):
|
||||
if hasattr(self.get_frame, "clear_cache"):
|
||||
self.get_frame.clear_cache()
|
||||
|
||||
def __iter__(self):
|
||||
@ -300,7 +325,9 @@ class Coordinates:
|
||||
|
||||
@wraps(AtomSubset.subset)
|
||||
def subset(self, **kwargs):
|
||||
return Coordinates(self.frames, atom_subset=self.atom_subset.subset(**kwargs), mode=self._mode)
|
||||
return Coordinates(
|
||||
self.frames, atom_subset=self.atom_subset.subset(**kwargs), mode=self._mode
|
||||
)
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
@ -312,7 +339,6 @@ class Coordinates:
|
||||
|
||||
|
||||
class MeanCoordinates(Coordinates):
|
||||
|
||||
def __init__(self, frames, atom_filter=None, mean=1):
|
||||
super().__init__(frames, atom_filter)
|
||||
self.mean = mean
|
||||
@ -330,7 +356,6 @@ class MeanCoordinates(Coordinates):
|
||||
|
||||
|
||||
class CoordinatesMap:
|
||||
|
||||
def __init__(self, coordinates, function):
|
||||
self.coordinates = coordinates
|
||||
self.frames = self.coordinates.frames
|
||||
@ -374,7 +399,7 @@ class CoordinatesMap:
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return '{}_{}'.format(self._description, self.coordinates.description)
|
||||
return "{}_{}".format(self._description, self.coordinates.description)
|
||||
|
||||
@description.setter
|
||||
def description(self, desc):
|
||||
@ -392,8 +417,8 @@ class CoordinatesMap:
|
||||
def pbc(self):
|
||||
return CoordinatesMap(self.coordinates.pbc, self.function)
|
||||
|
||||
class CoordinatesFilter:
|
||||
|
||||
class CoordinatesFilter:
|
||||
@property
|
||||
def atom_subset(self):
|
||||
pass
|
||||
@ -465,6 +490,7 @@ def map_coordinates(func):
|
||||
@wraps(func)
|
||||
def wrapped(coordinates, **kwargs):
|
||||
return CoordinatesMap(coordinates, partial(func, **kwargs))
|
||||
|
||||
return wrapped
|
||||
|
||||
|
||||
@ -496,13 +522,15 @@ def centers_of_mass(c, *, masses=None):
|
||||
number_of_masses = len(masses)
|
||||
number_of_coordinates, number_of_dimensions = c.shape
|
||||
number_of_new_coordinates = number_of_coordinates // number_of_masses
|
||||
grouped_masses = c.reshape(number_of_new_coordinates, number_of_masses, number_of_dimensions)
|
||||
grouped_masses = c.reshape(
|
||||
number_of_new_coordinates, number_of_masses, number_of_dimensions
|
||||
)
|
||||
|
||||
return np.average(grouped_masses, axis=1, weights=masses)
|
||||
|
||||
|
||||
@map_coordinates
|
||||
def pore_coordinates(coordinates, origin, sym_axis='z'):
|
||||
def pore_coordinates(coordinates, origin, sym_axis="z"):
|
||||
"""
|
||||
Map coordinates of a pore simulation so the pore has cylindrical symmetry.
|
||||
|
||||
@ -512,9 +540,9 @@ def pore_coordinates(coordinates, origin, sym_axis='z'):
|
||||
sym_axis (opt.): Symmtery axis of the pore, may be a literal direction
|
||||
'x', 'y' or 'z' or an array of shape (3,)
|
||||
"""
|
||||
if sym_axis in ('x', 'y', 'z'):
|
||||
if sym_axis in ("x", "y", "z"):
|
||||
rot_axis = np.zeros(shape=(3,))
|
||||
rot_axis[['x', 'y', 'z'].index(sym_axis)] = 1
|
||||
rot_axis[["x", "y", "z"].index(sym_axis)] = 1
|
||||
else:
|
||||
rot_axis = sym_axis
|
||||
|
||||
@ -560,4 +588,4 @@ def vectors(coordinates, atoms_a, atoms_b, normed=False, box=None):
|
||||
vectors = pbc_diff(coords_a, coords_b, box=box)
|
||||
norm = np.linalg.norm(vectors, axis=-1).reshape(-1, 1) if normed else 1
|
||||
vectors.reference = coords_a
|
||||
return vectors / norm
|
||||
return vectors / norm
|
||||
|
@ -34,91 +34,110 @@ def subensemble_correlation(selector_function, correlation_function=correlation)
|
||||
selector = selector_function(start_frame)
|
||||
subensemble = map(lambda f: f[selector], chain([start_frame], iterator))
|
||||
return correlation_function(function, subensemble)
|
||||
|
||||
return c
|
||||
|
||||
|
||||
def multi_subensemble_correlation(selector_function):
|
||||
"""
|
||||
selector_function has to expect a frame and to
|
||||
return either valid indices (as with subensemble_correlation)
|
||||
or a multidimensional array whose entries are valid indices
|
||||
|
||||
e.g. slice(10,100,2)
|
||||
|
||||
e.g. [1,2,3,4,5]
|
||||
|
||||
e.g. [[[0,1],[2],[3]],[[4],[5],[6]] -> shape: 2,3 with
|
||||
list of indices of varying length
|
||||
|
||||
e.g. [slice(1653),slice(1653,None,3)]
|
||||
|
||||
e.g. [np.ones(len_of_frames, bool)]
|
||||
|
||||
in general using slices is the most efficient.
|
||||
if the selections are small subsets of a frame or when many subsets are empty
|
||||
using indices will be more efficient than using masks.
|
||||
selector_function has to expect a frame and to
|
||||
return either valid indices (as with subensemble_correlation)
|
||||
or a multidimensional array whose entries are valid indices
|
||||
|
||||
e.g. slice(10,100,2)
|
||||
|
||||
e.g. [1,2,3,4,5]
|
||||
|
||||
e.g. [[[0,1],[2],[3]],[[4],[5],[6]] -> shape: 2,3 with
|
||||
list of indices of varying length
|
||||
|
||||
e.g. [slice(1653),slice(1653,None,3)]
|
||||
|
||||
e.g. [np.ones(len_of_frames, bool)]
|
||||
|
||||
in general using slices is the most efficient.
|
||||
if the selections are small subsets of a frame or when many subsets are empty
|
||||
using indices will be more efficient than using masks.
|
||||
"""
|
||||
|
||||
@set_has_counter
|
||||
def cmulti(function, frames):
|
||||
iterator = iter(frames)
|
||||
start_frame = next(iterator)
|
||||
selectors = np.asarray(selector_function(start_frame))
|
||||
sel_shape = selectors.shape
|
||||
if sel_shape[-1] == 0: selectors = np.asarray(selectors,int)
|
||||
if (selectors.dtype != object): sel_shape = sel_shape[:-1]
|
||||
f_values = np.zeros(sel_shape + function(start_frame,start_frame).shape,)
|
||||
count = np.zeros(sel_shape, dtype=int)
|
||||
if sel_shape[-1] == 0:
|
||||
selectors = np.asarray(selectors, int)
|
||||
if selectors.dtype != object:
|
||||
sel_shape = sel_shape[:-1]
|
||||
f_values = np.zeros(
|
||||
sel_shape + function(start_frame, start_frame).shape,
|
||||
)
|
||||
count = np.zeros(sel_shape, dtype=int)
|
||||
is_first_frame_loop = True
|
||||
def cc(act_frame):
|
||||
|
||||
def cc(act_frame):
|
||||
nonlocal is_first_frame_loop
|
||||
for index in np.ndindex(sel_shape):
|
||||
sel = selectors[index]
|
||||
sf_sel = start_frame[sel]
|
||||
if is_first_frame_loop:
|
||||
count[index] = len(sf_sel)
|
||||
f_values[index] = function(sf_sel, act_frame[sel]) if count[index] != 0 else 0
|
||||
is_first_frame_loop = False
|
||||
count[index] = len(sf_sel)
|
||||
f_values[index] = (
|
||||
function(sf_sel, act_frame[sel]) if count[index] != 0 else 0
|
||||
)
|
||||
is_first_frame_loop = False
|
||||
return np.asarray(f_values.copy())
|
||||
|
||||
return map(cc, chain([start_frame], iterator)), count
|
||||
|
||||
return cmulti
|
||||
|
||||
|
||||
@autosave_data(2)
|
||||
def shifted_correlation(function, frames, selector=None, segments=10,
|
||||
skip=0.1, window=0.5, average=True, points=100,
|
||||
nodes=8):
|
||||
def shifted_correlation(
|
||||
function,
|
||||
frames,
|
||||
selector=None,
|
||||
segments=10,
|
||||
skip=0.1,
|
||||
window=0.5,
|
||||
average=True,
|
||||
points=100,
|
||||
nodes=8,
|
||||
):
|
||||
"""
|
||||
Calculate the time series for a correlation function.
|
||||
|
||||
The times at which the correlation is calculated are determined by
|
||||
The times at which the correlation is calculated are determined by
|
||||
a logarithmic distribution.
|
||||
|
||||
Args:
|
||||
function: The function that should be correlated
|
||||
frames: The coordinates of the simulation data
|
||||
frames: The coordinates of the simulation data
|
||||
selector (opt.):
|
||||
A function that returns the indices depending on
|
||||
the staring frame for which particles the
|
||||
A function that returns the indices depending on
|
||||
the staring frame for which particles the
|
||||
correlation should be calculated
|
||||
segments (int, opt.):
|
||||
The number of segments the time window will be
|
||||
The number of segments the time window will be
|
||||
shifted
|
||||
skip (float, opt.):
|
||||
The fraction of the trajectory that will be skipped
|
||||
at the beginning, if this is None the start index
|
||||
of the frames slice will be used, which defaults
|
||||
to 0.1.
|
||||
The fraction of the trajectory that will be skipped
|
||||
at the beginning, if this is None the start index
|
||||
of the frames slice will be used, which defaults
|
||||
to 0.1.
|
||||
window (float, opt.):
|
||||
The fraction of the simulation the time series will
|
||||
The fraction of the simulation the time series will
|
||||
cover
|
||||
average (bool, opt.):
|
||||
If True, returns averaged correlation function
|
||||
points (int, opt.):
|
||||
The number of timeshifts for which the correlation
|
||||
average (bool, opt.):
|
||||
If True, returns averaged correlation function
|
||||
points (int, opt.):
|
||||
The number of timeshifts for which the correlation
|
||||
should be calculated
|
||||
nodes (int, opt.):
|
||||
nodes (int, opt.):
|
||||
Number of nodes used for parallelization
|
||||
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
A list of length N that contains the timeshiftes of the frames at which
|
||||
@ -130,6 +149,7 @@ def shifted_correlation(function, frames, selector=None, segments=10,
|
||||
|
||||
>>> time, data = shifted_correlation(msd, coords)
|
||||
"""
|
||||
|
||||
def get_correlation(start_frame, idx, selector=None):
|
||||
shifted_idx = idx + start_frame
|
||||
if selector:
|
||||
@ -140,42 +160,51 @@ def shifted_correlation(function, frames, selector=None, segments=10,
|
||||
return np.zeros(len(idx))
|
||||
else:
|
||||
start = frames[start_frame][index]
|
||||
correlation = np.array([ function(start, frames[frame][index])
|
||||
for frame in shifted_idx ])
|
||||
correlation = np.array(
|
||||
[function(start, frames[frame][index]) for frame in shifted_idx]
|
||||
)
|
||||
return correlation
|
||||
|
||||
if 1-skip < window:
|
||||
window = 1-skip
|
||||
if 1 - skip < window:
|
||||
window = 1 - skip
|
||||
|
||||
start_frames = np.unique(np.linspace(len(frames)*skip,
|
||||
len(frames)*(1-window),
|
||||
num=segments, endpoint=False,
|
||||
dtype=int))
|
||||
start_frames = np.unique(
|
||||
np.linspace(
|
||||
len(frames) * skip,
|
||||
len(frames) * (1 - window),
|
||||
num=segments,
|
||||
endpoint=False,
|
||||
dtype=int,
|
||||
)
|
||||
)
|
||||
|
||||
num_frames = int(len(frames) * window)
|
||||
ls = np.logspace(0, np.log10(num_frames + 1), num=points)
|
||||
idx = np.unique(np.int_(ls) - 1)
|
||||
t = np.array([frames[i].time for i in idx]) - frames[0].time
|
||||
|
||||
|
||||
if nodes == 1:
|
||||
result = np.array([get_correlation(start_frame, idx=idx,
|
||||
selector=selector)
|
||||
for start_frame in start_frames])
|
||||
result = np.array(
|
||||
[
|
||||
get_correlation(start_frame, idx=idx, selector=selector)
|
||||
for start_frame in start_frames
|
||||
]
|
||||
)
|
||||
else:
|
||||
pool = ProcessPool(nodes=nodes)
|
||||
result = np.array(pool.map(partial(get_correlation, idx=idx,
|
||||
selector=selector),
|
||||
start_frames))
|
||||
result = np.array(
|
||||
pool.map(partial(get_correlation, idx=idx, selector=selector), start_frames)
|
||||
)
|
||||
pool.terminate()
|
||||
pool.restart()
|
||||
|
||||
|
||||
if average == True:
|
||||
clean_result = []
|
||||
for entry in result:
|
||||
if np.all(entry == 0):
|
||||
continue
|
||||
else:
|
||||
clean_result.append(entry)
|
||||
clean_result.append(entry)
|
||||
result = np.array(clean_result)
|
||||
result = np.average(result, axis=0)
|
||||
return t, result
|
||||
@ -186,7 +215,7 @@ def msd(start, frame):
|
||||
Mean square displacement
|
||||
"""
|
||||
vec = start - frame
|
||||
return (vec ** 2).sum(axis=1).mean()
|
||||
return (vec**2).sum(axis=1).mean()
|
||||
|
||||
|
||||
def isf(start, frame, q, box=None):
|
||||
@ -197,7 +226,7 @@ def isf(start, frame, q, box=None):
|
||||
:param q: length of scattering vector
|
||||
"""
|
||||
vec = start - frame
|
||||
distance = (vec ** 2).sum(axis=1) ** .5
|
||||
distance = (vec**2).sum(axis=1) ** 0.5
|
||||
return np.sinc(distance * q / np.pi).mean()
|
||||
|
||||
|
||||
@ -226,11 +255,13 @@ def van_hove_self(start, end, bins):
|
||||
G(r, t) = \sum_i \delta(|\vec r_i(0) - \vec r_i(t)| - r)
|
||||
"""
|
||||
vec = start - end
|
||||
delta_r = ((vec)**2).sum(axis=-1)**.5
|
||||
delta_r = ((vec) ** 2).sum(axis=-1) ** 0.5
|
||||
return 1 / len(start) * histogram(delta_r, bins)[0]
|
||||
|
||||
|
||||
def van_hove_distinct(onset, frame, bins, box=None, use_dask=True, comp=False, bincount=True):
|
||||
def van_hove_distinct(
|
||||
onset, frame, bins, box=None, use_dask=True, comp=False, bincount=True
|
||||
):
|
||||
r"""
|
||||
Compute the distinct part of the Van Hove autocorrelation function.
|
||||
|
||||
@ -242,9 +273,13 @@ def van_hove_distinct(onset, frame, bins, box=None, use_dask=True, comp=False, b
|
||||
dimension = len(box)
|
||||
N = len(onset)
|
||||
if use_dask:
|
||||
onset = darray.from_array(onset, chunks=(500, dimension)).reshape(1, N, dimension)
|
||||
frame = darray.from_array(frame, chunks=(500, dimension)).reshape(N, 1, dimension)
|
||||
dist = ((pbc_diff(onset, frame, box)**2).sum(axis=-1)**0.5).ravel()
|
||||
onset = darray.from_array(onset, chunks=(500, dimension)).reshape(
|
||||
1, N, dimension
|
||||
)
|
||||
frame = darray.from_array(frame, chunks=(500, dimension)).reshape(
|
||||
N, 1, dimension
|
||||
)
|
||||
dist = ((pbc_diff(onset, frame, box) ** 2).sum(axis=-1) ** 0.5).ravel()
|
||||
if np.diff(bins).std() < 1e6:
|
||||
dx = bins[0] - bins[1]
|
||||
hist = darray.bincount((dist // dx).astype(int), minlength=(len(bins) - 1))
|
||||
@ -253,16 +288,20 @@ def van_hove_distinct(onset, frame, bins, box=None, use_dask=True, comp=False, b
|
||||
return hist.compute() / N
|
||||
else:
|
||||
if comp:
|
||||
|
||||
dx = bins[1] - bins[0]
|
||||
minlength = len(bins) - 1
|
||||
|
||||
def f(x):
|
||||
d = (pbc_diff(x, frame, box)**2).sum(axis=-1)**0.5
|
||||
return np.bincount((d // dx).astype(int), minlength=minlength)[:minlength]
|
||||
d = (pbc_diff(x, frame, box) ** 2).sum(axis=-1) ** 0.5
|
||||
return np.bincount((d // dx).astype(int), minlength=minlength)[
|
||||
:minlength
|
||||
]
|
||||
|
||||
hist = sum(f(x) for x in onset)
|
||||
else:
|
||||
dist = (pbc_diff(onset.reshape(1, -1, 3), frame.reshape(-1, 1, 3), box)**2).sum(axis=-1)**0.5
|
||||
dist = (
|
||||
pbc_diff(onset.reshape(1, -1, 3), frame.reshape(-1, 1, 3), box) ** 2
|
||||
).sum(axis=-1) ** 0.5
|
||||
hist = histogram(dist, bins=bins)[0]
|
||||
return hist / N
|
||||
|
||||
@ -304,9 +343,12 @@ def susceptibility(time, correlation, **kwargs):
|
||||
**kwargs (opt.):
|
||||
Additional keyword arguments will be passed to :func:`filon_fourier_transformation`.
|
||||
"""
|
||||
frequencies, fourier = filon_fourier_transformation(time, correlation, imag=False, **kwargs)
|
||||
frequencies, fourier = filon_fourier_transformation(
|
||||
time, correlation, imag=False, **kwargs
|
||||
)
|
||||
return frequencies, frequencies * fourier
|
||||
|
||||
|
||||
def coherent_scattering_function(onset, frame, q):
|
||||
"""
|
||||
Calculate the coherent scattering function.
|
||||
@ -331,11 +373,12 @@ def coherent_scattering_function(onset, frame, q):
|
||||
|
||||
return coherent_sum(scfunc, onset.pbc, frame.pbc) / len(onset)
|
||||
|
||||
|
||||
def non_gaussian(onset, frame):
|
||||
"""
|
||||
Calculate the Non-Gaussian parameter :
|
||||
..math:
|
||||
\alpha_2 (t) = \frac{3}{5}\frac{\langle r_i^4(t)\rangle}{\langle r_i^2(t)\rangle^2} - 1
|
||||
"""
|
||||
r_2 = ((frame - onset)**2).sum(axis=-1)
|
||||
return 3 / 5 * (r_2**2).mean() / r_2.mean()**2 - 1
|
||||
r_2 = ((frame - onset) ** 2).sum(axis=-1)
|
||||
return 3 / 5 * (r_2**2).mean() / r_2.mean() ** 2 - 1
|
||||
|
@ -9,7 +9,7 @@ from .logging import logger
|
||||
from scipy import spatial
|
||||
|
||||
|
||||
@autosave_data(nargs=2, kwargs_keys=('coordinates_b',), version='time_average-1')
|
||||
@autosave_data(nargs=2, kwargs_keys=("coordinates_b",), version="time_average-1")
|
||||
def time_average(function, coordinates, coordinates_b=None, pool=None):
|
||||
"""
|
||||
Compute the time average of a function.
|
||||
@ -45,7 +45,7 @@ def time_average(function, coordinates, coordinates_b=None, pool=None):
|
||||
number_of_averages += 1
|
||||
result += ev
|
||||
if number_of_averages % 100 == 0:
|
||||
logger.debug('time_average: %d', number_of_averages)
|
||||
logger.debug("time_average: %d", number_of_averages)
|
||||
|
||||
return result / number_of_averages
|
||||
|
||||
@ -78,7 +78,16 @@ def time_histogram(function, coordinates, bins, hist_range, pool=None):
|
||||
return hist_results
|
||||
|
||||
|
||||
def rdf(atoms_a, atoms_b=None, bins=None, box=None, kind=None, chunksize=50000, returnx=False, **kwargs):
|
||||
def rdf(
|
||||
atoms_a,
|
||||
atoms_b=None,
|
||||
bins=None,
|
||||
box=None,
|
||||
kind=None,
|
||||
chunksize=50000,
|
||||
returnx=False,
|
||||
**kwargs
|
||||
):
|
||||
r"""
|
||||
Compute the radial pair distribution of one or two sets of atoms.
|
||||
|
||||
@ -102,8 +111,12 @@ def rdf(atoms_a, atoms_b=None, bins=None, box=None, kind=None, chunksize=50000,
|
||||
as large as possible, depending on the available memory.
|
||||
returnx (opt.): If True the x ordinate of the histogram is returned.
|
||||
"""
|
||||
assert bins is not None, 'Bins of the pair distribution have to be defined.'
|
||||
assert kind in ['intra', 'inter', None], 'Argument kind must be one of the following: intra, inter, None.'
|
||||
assert bins is not None, "Bins of the pair distribution have to be defined."
|
||||
assert kind in [
|
||||
"intra",
|
||||
"inter",
|
||||
None,
|
||||
], "Argument kind must be one of the following: intra, inter, None."
|
||||
if box is None:
|
||||
box = atoms_a.box.diagonal()
|
||||
if atoms_b is None:
|
||||
@ -121,18 +134,24 @@ def rdf(atoms_a, atoms_b=None, bins=None, box=None, kind=None, chunksize=50000,
|
||||
for chunk in range(0, len(indices[0]), chunksize):
|
||||
sl = slice(chunk, chunk + chunksize)
|
||||
diff = pbc_diff(atoms_a[indices[0][sl]], atoms_b[indices[1][sl]], box)
|
||||
dist = (diff**2).sum(axis=1)**0.5
|
||||
if kind == 'intra':
|
||||
mask = atoms_a.residue_ids[indices[0][sl]] == atoms_b.residue_ids[indices[1][sl]]
|
||||
dist = (diff**2).sum(axis=1) ** 0.5
|
||||
if kind == "intra":
|
||||
mask = (
|
||||
atoms_a.residue_ids[indices[0][sl]]
|
||||
== atoms_b.residue_ids[indices[1][sl]]
|
||||
)
|
||||
dist = dist[mask]
|
||||
elif kind == 'inter':
|
||||
mask = atoms_a.residue_ids[indices[0][sl]] != atoms_b.residue_ids[indices[1][sl]]
|
||||
elif kind == "inter":
|
||||
mask = (
|
||||
atoms_a.residue_ids[indices[0][sl]]
|
||||
!= atoms_b.residue_ids[indices[1][sl]]
|
||||
)
|
||||
dist = dist[mask]
|
||||
|
||||
nr_of_samples += len(dist)
|
||||
hist += np.histogram(dist, bins)[0]
|
||||
|
||||
volume = 4 / 3 * np.pi * (bins[1:]**3 - bins[:-1]**3)
|
||||
volume = 4 / 3 * np.pi * (bins[1:] ** 3 - bins[:-1] ** 3)
|
||||
density = nr_of_samples / np.prod(box)
|
||||
res = hist / volume / density
|
||||
if returnx:
|
||||
@ -141,87 +160,117 @@ def rdf(atoms_a, atoms_b=None, bins=None, box=None, kind=None, chunksize=50000,
|
||||
return res
|
||||
|
||||
|
||||
def pbc_tree_rdf(atoms_a, atoms_b=None, bins=None, box=None, exclude=0, returnx=False, **kwargs):
|
||||
def pbc_tree_rdf(
|
||||
atoms_a, atoms_b=None, bins=None, box=None, exclude=0, returnx=False, **kwargs
|
||||
):
|
||||
if box is None:
|
||||
box = atoms_a.box.diagonal()
|
||||
all_coords = pbc_points(atoms_b, box, thickness=np.amax(bins)+0.1)
|
||||
all_coords = pbc_points(atoms_b, box, thickness=np.amax(bins) + 0.1)
|
||||
to_tree = spatial.cKDTree(all_coords)
|
||||
dist = to_tree.query(pbc_diff(atoms_a,box=box),k=len(atoms_b), distance_upper_bound=np.amax(bins)+0.1)[0].flatten()
|
||||
dist = to_tree.query(
|
||||
pbc_diff(atoms_a, box=box),
|
||||
k=len(atoms_b),
|
||||
distance_upper_bound=np.amax(bins) + 0.1,
|
||||
)[0].flatten()
|
||||
dist = dist[dist < np.inf]
|
||||
hist = np.histogram(dist, bins)[0]
|
||||
volume = 4/3*np.pi*(bins[1:]**3-bins[:-1]**3)
|
||||
res = (hist) * np.prod(box) / volume / len(atoms_a) / (len(atoms_b)-exclude)
|
||||
volume = 4 / 3 * np.pi * (bins[1:] ** 3 - bins[:-1] ** 3)
|
||||
res = (hist) * np.prod(box) / volume / len(atoms_a) / (len(atoms_b) - exclude)
|
||||
if returnx:
|
||||
return np.vstack((runningmean(bins, 2), res))
|
||||
else:
|
||||
return res
|
||||
|
||||
|
||||
def pbc_spm_rdf(atoms_a, atoms_b=None, bins=None, box=None, exclude=0, returnx=False, **kwargs):
|
||||
def pbc_spm_rdf(
|
||||
atoms_a, atoms_b=None, bins=None, box=None, exclude=0, returnx=False, **kwargs
|
||||
):
|
||||
if box is None:
|
||||
box = atoms_a.box
|
||||
all_coords = pbc_points(atoms_b, box, thickness=np.amax(bins)+0.1)
|
||||
all_coords = pbc_points(atoms_b, box, thickness=np.amax(bins) + 0.1)
|
||||
to_tree = spatial.cKDTree(all_coords)
|
||||
if all_coords.nbytes/1024**3 * len(atoms_a) < 2:
|
||||
from_tree = spatial.cKDTree(pbc_diff(atoms_a,box=box))
|
||||
dist = to_tree.sparse_distance_matrix(from_tree, max_distance=np.amax(bins)+0.1, output_type='ndarray')
|
||||
dist = np.asarray(dist.tolist())[:,2]
|
||||
if all_coords.nbytes / 1024**3 * len(atoms_a) < 2:
|
||||
from_tree = spatial.cKDTree(pbc_diff(atoms_a, box=box))
|
||||
dist = to_tree.sparse_distance_matrix(
|
||||
from_tree, max_distance=np.amax(bins) + 0.1, output_type="ndarray"
|
||||
)
|
||||
dist = np.asarray(dist.tolist())[:, 2]
|
||||
hist = np.histogram(dist, bins)[0]
|
||||
else:
|
||||
chunksize = int(2 * len(atoms_a) / (all_coords.nbytes/1024**3 * len(atoms_a)))
|
||||
chunksize = int(
|
||||
2 * len(atoms_a) / (all_coords.nbytes / 1024**3 * len(atoms_a))
|
||||
)
|
||||
hist = 0
|
||||
for chunk in range(0, len(atoms_a), chunksize):
|
||||
sl = slice(chunk, chunk + chunksize)
|
||||
from_tree = spatial.cKDTree(pbc_diff(atoms_a[sl],box=box))
|
||||
dist = to_tree.sparse_distance_matrix(from_tree, max_distance=np.amax(bins)+0.1, output_type='ndarray')
|
||||
dist = np.asarray(dist.tolist())[:,2]
|
||||
from_tree = spatial.cKDTree(pbc_diff(atoms_a[sl], box=box))
|
||||
dist = to_tree.sparse_distance_matrix(
|
||||
from_tree, max_distance=np.amax(bins) + 0.1, output_type="ndarray"
|
||||
)
|
||||
dist = np.asarray(dist.tolist())[:, 2]
|
||||
hist += np.histogram(dist, bins)[0]
|
||||
|
||||
volume = 4/3*np.pi*(bins[1:]**3-bins[:-1]**3)
|
||||
res = (hist) * np.prod(box) / volume / len(atoms_a) / (len(atoms_b)-exclude)
|
||||
volume = 4 / 3 * np.pi * (bins[1:] ** 3 - bins[:-1] ** 3)
|
||||
res = (hist) * np.prod(box) / volume / len(atoms_a) / (len(atoms_b) - exclude)
|
||||
if returnx:
|
||||
return np.vstack((runningmean(bins, 2), res))
|
||||
else:
|
||||
return res
|
||||
|
||||
|
||||
@autosave_data(nargs=2, kwargs_keys=('to_coords','times'))
|
||||
@autosave_data(nargs=2, kwargs_keys=("to_coords", "times"))
|
||||
def fast_averaged_rdf(from_coords, bins, to_coords=None, times=10, exclude=0, **kwargs):
|
||||
if to_coords is None:
|
||||
to_coords = from_coords
|
||||
exclude = 1
|
||||
# first find timings for the different rdf functions
|
||||
import time
|
||||
|
||||
# only consider sparse matrix for this condition
|
||||
if (len(from_coords[0])*len(to_coords[0]) <= 3000 * 2000 ) & (len(from_coords[0])/len(to_coords[0]) > 5 ):
|
||||
if (len(from_coords[0]) * len(to_coords[0]) <= 3000 * 2000) & (
|
||||
len(from_coords[0]) / len(to_coords[0]) > 5
|
||||
):
|
||||
funcs = [rdf, pbc_tree_rdf, pbc_spm_rdf]
|
||||
else:
|
||||
funcs = [rdf, pbc_tree_rdf]
|
||||
timings = []
|
||||
for f in funcs:
|
||||
start = time.time()
|
||||
f(from_coords[0], atoms_b=to_coords[0], bins=bins, box=np.diag(from_coords[0].box))
|
||||
f(
|
||||
from_coords[0],
|
||||
atoms_b=to_coords[0],
|
||||
bins=bins,
|
||||
box=np.diag(from_coords[0].box),
|
||||
)
|
||||
end = time.time()
|
||||
timings.append(end-start)
|
||||
timings.append(end - start)
|
||||
timings = np.array(timings)
|
||||
timings[0] = 2*timings[0] # statistics for the other functions is twice as good per frame
|
||||
logger.debug('rdf function timings: ' + str(timings))
|
||||
timings[0] = (
|
||||
2 * timings[0]
|
||||
) # statistics for the other functions is twice as good per frame
|
||||
logger.debug("rdf function timings: " + str(timings))
|
||||
rdffunc = funcs[np.argmin(timings)]
|
||||
logger.debug('rdf function used: ' + str(rdffunc))
|
||||
logger.debug("rdf function used: " + str(rdffunc))
|
||||
if rdffunc == rdf:
|
||||
times = times*2 # duplicate times for same statistics
|
||||
times = times * 2 # duplicate times for same statistics
|
||||
|
||||
frames = np.array(range(0, len(from_coords), int(len(from_coords)/times)))[:times]
|
||||
out = np.zeros(len(bins)-1)
|
||||
frames = np.array(range(0, len(from_coords), int(len(from_coords) / times)))[:times]
|
||||
out = np.zeros(len(bins) - 1)
|
||||
for j, i in enumerate(frames):
|
||||
logger.debug('multi_radial_pair_distribution: %d/%d', j, len(frames))
|
||||
out += rdffunc(from_coords[i], to_coords[i], bins, box=np.diag(from_coords[i].box), exclude=exclude)
|
||||
return out/len(frames)
|
||||
logger.debug("multi_radial_pair_distribution: %d/%d", j, len(frames))
|
||||
out += rdffunc(
|
||||
from_coords[i],
|
||||
to_coords[i],
|
||||
bins,
|
||||
box=np.diag(from_coords[i].box),
|
||||
exclude=exclude,
|
||||
)
|
||||
return out / len(frames)
|
||||
|
||||
|
||||
def distance_distribution(atoms, bins):
|
||||
connection_vectors = atoms[:-1, :] - atoms[1:, :]
|
||||
connection_lengths = (connection_vectors**2).sum(axis=1)**.5
|
||||
connection_lengths = (connection_vectors**2).sum(axis=1) ** 0.5
|
||||
return np.histogram(connection_lengths, bins)[0]
|
||||
|
||||
|
||||
@ -230,8 +279,12 @@ def tetrahedral_order(atoms, reference_atoms=None):
|
||||
reference_atoms = atoms
|
||||
indices = next_neighbors(reference_atoms, query_atoms=atoms, number_of_neighbors=4)
|
||||
neighbors = reference_atoms[indices]
|
||||
neighbors_1, neighbors_2, neighbors_3, neighbors_4 = \
|
||||
neighbors[:, 0, :], neighbors[:, 1, :], neighbors[:, 2, :], neighbors[:, 3, :]
|
||||
neighbors_1, neighbors_2, neighbors_3, neighbors_4 = (
|
||||
neighbors[:, 0, :],
|
||||
neighbors[:, 1, :],
|
||||
neighbors[:, 2, :],
|
||||
neighbors[:, 3, :],
|
||||
)
|
||||
|
||||
# Connection vectors
|
||||
neighbors_1 -= atoms
|
||||
@ -245,14 +298,14 @@ def tetrahedral_order(atoms, reference_atoms=None):
|
||||
neighbors_3 /= np.linalg.norm(neighbors_3, axis=-1).reshape(-1, 1)
|
||||
neighbors_4 /= np.linalg.norm(neighbors_4, axis=-1).reshape(-1, 1)
|
||||
|
||||
a_1_2 = ((neighbors_1 * neighbors_2).sum(axis=1) + 1 / 3)**2
|
||||
a_1_3 = ((neighbors_1 * neighbors_3).sum(axis=1) + 1 / 3)**2
|
||||
a_1_4 = ((neighbors_1 * neighbors_4).sum(axis=1) + 1 / 3)**2
|
||||
a_1_2 = ((neighbors_1 * neighbors_2).sum(axis=1) + 1 / 3) ** 2
|
||||
a_1_3 = ((neighbors_1 * neighbors_3).sum(axis=1) + 1 / 3) ** 2
|
||||
a_1_4 = ((neighbors_1 * neighbors_4).sum(axis=1) + 1 / 3) ** 2
|
||||
|
||||
a_2_3 = ((neighbors_2 * neighbors_3).sum(axis=1) + 1 / 3)**2
|
||||
a_2_4 = ((neighbors_2 * neighbors_4).sum(axis=1) + 1 / 3)**2
|
||||
a_2_3 = ((neighbors_2 * neighbors_3).sum(axis=1) + 1 / 3) ** 2
|
||||
a_2_4 = ((neighbors_2 * neighbors_4).sum(axis=1) + 1 / 3) ** 2
|
||||
|
||||
a_3_4 = ((neighbors_3 * neighbors_4).sum(axis=1) + 1 / 3)**2
|
||||
a_3_4 = ((neighbors_3 * neighbors_4).sum(axis=1) + 1 / 3) ** 2
|
||||
|
||||
q = 1 - 3 / 8 * (a_1_2 + a_1_3 + a_1_4 + a_2_3 + a_2_4 + a_3_4)
|
||||
|
||||
@ -260,12 +313,14 @@ def tetrahedral_order(atoms, reference_atoms=None):
|
||||
|
||||
|
||||
def tetrahedral_order_distribution(atoms, reference_atoms=None, bins=None):
|
||||
assert bins is not None, 'Bin edges of the distribution have to be specified.'
|
||||
assert bins is not None, "Bin edges of the distribution have to be specified."
|
||||
Q = tetrahedral_order(atoms, reference_atoms=reference_atoms)
|
||||
return np.histogram(Q, bins=bins)[0]
|
||||
|
||||
|
||||
def radial_density(atoms, bins, symmetry_axis=(0, 0, 1), origin=(0, 0, 0), height=1, returnx=False):
|
||||
def radial_density(
|
||||
atoms, bins, symmetry_axis=(0, 0, 1), origin=(0, 0, 0), height=1, returnx=False
|
||||
):
|
||||
"""
|
||||
Calculate the radial density distribution.
|
||||
|
||||
@ -290,7 +345,7 @@ def radial_density(atoms, bins, symmetry_axis=(0, 0, 1), origin=(0, 0, 0), heigh
|
||||
cartesian = rotate_axis(atoms - origin, symmetry_axis)
|
||||
radius, _ = polar_coordinates(cartesian[:, 0], cartesian[:, 1])
|
||||
hist = np.histogram(radius, bins=bins)[0]
|
||||
volume = np.pi * (bins[1:]**2 - bins[:-1]**2) * height
|
||||
volume = np.pi * (bins[1:] ** 2 - bins[:-1] ** 2) * height
|
||||
res = hist / volume
|
||||
if returnx:
|
||||
return np.vstack((runningmean(bins, 2), res))
|
||||
@ -298,8 +353,14 @@ def radial_density(atoms, bins, symmetry_axis=(0, 0, 1), origin=(0, 0, 0), heigh
|
||||
return res
|
||||
|
||||
|
||||
def shell_density(atoms, shell_radius, bins, shell_thickness=0.5,
|
||||
symmetry_axis=(0, 0, 1), origin=(0, 0, 0)):
|
||||
def shell_density(
|
||||
atoms,
|
||||
shell_radius,
|
||||
bins,
|
||||
shell_thickness=0.5,
|
||||
symmetry_axis=(0, 0, 1),
|
||||
origin=(0, 0, 0),
|
||||
):
|
||||
"""
|
||||
Compute the density distribution on a cylindrical shell.
|
||||
|
||||
@ -316,9 +377,11 @@ def shell_density(atoms, shell_radius, bins, shell_thickness=0.5,
|
||||
Returns:
|
||||
Two-dimensional density distribution of the atoms in the defined shell.
|
||||
"""
|
||||
cartesian = rotate_axis(atoms-origin, symmetry_axis)
|
||||
cartesian = rotate_axis(atoms - origin, symmetry_axis)
|
||||
radius, theta = polar_coordinates(cartesian[:, 0], cartesian[:, 1])
|
||||
shell_indices = (shell_radius <= radius) & (radius <= shell_radius + shell_thickness)
|
||||
shell_indices = (shell_radius <= radius) & (
|
||||
radius <= shell_radius + shell_thickness
|
||||
)
|
||||
hist = np.histogram2d(theta[shell_indices], cartesian[shell_indices, 2], bins)[0]
|
||||
|
||||
return hist
|
||||
@ -332,90 +395,121 @@ def spatial_density(atoms, bins, weights=None):
|
||||
return density
|
||||
|
||||
|
||||
def mixing_ratio_distribution(atoms_a, atoms_b, bins_ratio, bins_density,
|
||||
weights_a=None, weights_b=None, weights_ratio=None):
|
||||
def mixing_ratio_distribution(
|
||||
atoms_a,
|
||||
atoms_b,
|
||||
bins_ratio,
|
||||
bins_density,
|
||||
weights_a=None,
|
||||
weights_b=None,
|
||||
weights_ratio=None,
|
||||
):
|
||||
"""
|
||||
Compute the distribution of the mixing ratio of two sets of atoms.
|
||||
"""
|
||||
|
||||
density_a, _ = time_average
|
||||
density_b, _ = np.histogramdd(atoms_b, bins=bins_density, weights=weights_b)
|
||||
mixing_ratio = density_a/(density_a + density_b)
|
||||
mixing_ratio = density_a / (density_a + density_b)
|
||||
good_inds = (density_a != 0) & (density_b != 0)
|
||||
hist, _ = np.histogram(mixing_ratio[good_inds], bins=bins_ratio, weights=weights_ratio)
|
||||
hist, _ = np.histogram(
|
||||
mixing_ratio[good_inds], bins=bins_ratio, weights=weights_ratio
|
||||
)
|
||||
return hist
|
||||
|
||||
|
||||
def next_neighbor_distribution(atoms, reference=None, number_of_neighbors=4, bins=None, normed=True):
|
||||
def next_neighbor_distribution(
|
||||
atoms, reference=None, number_of_neighbors=4, bins=None, normed=True
|
||||
):
|
||||
"""
|
||||
Compute the distribution of next neighbors with the same residue name.
|
||||
"""
|
||||
assert bins is not None, 'Bins have to be specified.'
|
||||
assert bins is not None, "Bins have to be specified."
|
||||
if reference is None:
|
||||
reference = atoms
|
||||
nn = next_neighbors(reference, query_atoms=atoms, number_of_neighbors=number_of_neighbors)
|
||||
nn = next_neighbors(
|
||||
reference, query_atoms=atoms, number_of_neighbors=number_of_neighbors
|
||||
)
|
||||
resname_nn = reference.residue_names[nn]
|
||||
count_nn = (resname_nn == atoms.residue_names.reshape(-1, 1)).sum(axis=1)
|
||||
return np.histogram(count_nn, bins=bins, normed=normed)[0]
|
||||
|
||||
|
||||
def hbonds(D, H, A, box, DA_lim=0.35, HA_lim=0.35, min_cos=np.cos(30*np.pi/180), full_output=False):
|
||||
|
||||
|
||||
def hbonds(
|
||||
D,
|
||||
H,
|
||||
A,
|
||||
box,
|
||||
DA_lim=0.35,
|
||||
HA_lim=0.35,
|
||||
min_cos=np.cos(30 * np.pi / 180),
|
||||
full_output=False,
|
||||
):
|
||||
"""
|
||||
Compute h-bond pairs
|
||||
|
||||
|
||||
Args:
|
||||
D: Set of coordinates for donators.
|
||||
H: Set of coordinates for hydrogen atoms. Should have the same
|
||||
H: Set of coordinates for hydrogen atoms. Should have the same
|
||||
length as D.
|
||||
A: Set of coordinates for acceptors.
|
||||
DA_lim (opt.): Minimum distance beteen donator and acceptor.
|
||||
HA_lim (opt.): Minimum distance beteen hydrogen and acceptor.
|
||||
min_cos (opt.): Minimum cosine for the HDA angle. Default is
|
||||
min_cos (opt.): Minimum cosine for the HDA angle. Default is
|
||||
equivalent to a maximum angle of 30 degree.
|
||||
full_output (opt.): Returns additionally the cosine of the
|
||||
full_output (opt.): Returns additionally the cosine of the
|
||||
angles and the DA distances
|
||||
|
||||
|
||||
Return:
|
||||
List of (D,A)-pairs in hbonds.
|
||||
"""
|
||||
|
||||
List of (D,A)-pairs in hbonds.
|
||||
"""
|
||||
|
||||
def dist_DltA(D, H, A, box, max_dist=0.35):
|
||||
ppoints, pind = pbc_points(D, box, thickness=max_dist+0.1, index=True)
|
||||
ppoints, pind = pbc_points(D, box, thickness=max_dist + 0.1, index=True)
|
||||
Dtree = spatial.cKDTree(ppoints)
|
||||
Atree = spatial.cKDTree(A)
|
||||
pairs = Dtree.sparse_distance_matrix(Atree, max_dist, output_type='ndarray')
|
||||
pairs = Dtree.sparse_distance_matrix(Atree, max_dist, output_type="ndarray")
|
||||
pairs = np.asarray(pairs.tolist())
|
||||
pairs = np.int_(pairs[pairs[:,2] > 0][:,:2])
|
||||
pairs[:,0] = pind[pairs[:,0]]
|
||||
pairs = np.int_(pairs[pairs[:, 2] > 0][:, :2])
|
||||
pairs[:, 0] = pind[pairs[:, 0]]
|
||||
return pairs
|
||||
|
||||
def dist_AltD(D, H, A, box, max_dist=0.35):
|
||||
ppoints, pind = pbc_points(A, box, thickness=max_dist+0.1, index=True)
|
||||
ppoints, pind = pbc_points(A, box, thickness=max_dist + 0.1, index=True)
|
||||
Atree = spatial.cKDTree(ppoints)
|
||||
Dtree = spatial.cKDTree(D)
|
||||
pairs = Atree.sparse_distance_matrix(Dtree, max_dist, output_type='ndarray')
|
||||
pairs = Atree.sparse_distance_matrix(Dtree, max_dist, output_type="ndarray")
|
||||
pairs = np.asarray(pairs.tolist())
|
||||
pairs = np.int_(pairs[pairs[:,2] > 0][:,:2])
|
||||
pairs = pairs[:,::-1]
|
||||
pairs[:,1] = pind[pairs[:,1]]
|
||||
return pairs
|
||||
|
||||
if len(D) <= len(A):
|
||||
pairs = dist_DltA(D,H,A,box,DA_lim)
|
||||
else:
|
||||
pairs = dist_AltD(D,H,A,box,DA_lim)
|
||||
|
||||
vDH = pbc_diff(D[pairs[:,0]], H[pairs[:,0]], box)
|
||||
vDA = pbc_diff(D[pairs[:,0]], A[pairs[:,1]], box)
|
||||
vHA = pbc_diff(H[pairs[:,0]], A[pairs[:,1]], box)
|
||||
angles_cos = np.clip(np.einsum('ij,ij->i', vDH, vDA)/
|
||||
np.linalg.norm(vDH,axis=1)/
|
||||
np.linalg.norm(vDA,axis=1), -1, 1)
|
||||
is_bond = ((angles_cos >= min_cos) &
|
||||
(np.sum(vHA**2,axis=-1) <= HA_lim**2) &
|
||||
(np.sum(vDA**2,axis=-1) <= DA_lim**2))
|
||||
if full_output:
|
||||
return pairs[is_bond], angles_cos[is_bond], np.sum(vDA[is_bond]**2,axis=-1)**.5
|
||||
else:
|
||||
return pairs[is_bond]
|
||||
pairs = np.int_(pairs[pairs[:, 2] > 0][:, :2])
|
||||
pairs = pairs[:, ::-1]
|
||||
pairs[:, 1] = pind[pairs[:, 1]]
|
||||
return pairs
|
||||
|
||||
if len(D) <= len(A):
|
||||
pairs = dist_DltA(D, H, A, box, DA_lim)
|
||||
else:
|
||||
pairs = dist_AltD(D, H, A, box, DA_lim)
|
||||
|
||||
vDH = pbc_diff(D[pairs[:, 0]], H[pairs[:, 0]], box)
|
||||
vDA = pbc_diff(D[pairs[:, 0]], A[pairs[:, 1]], box)
|
||||
vHA = pbc_diff(H[pairs[:, 0]], A[pairs[:, 1]], box)
|
||||
angles_cos = np.clip(
|
||||
np.einsum("ij,ij->i", vDH, vDA)
|
||||
/ np.linalg.norm(vDH, axis=1)
|
||||
/ np.linalg.norm(vDA, axis=1),
|
||||
-1,
|
||||
1,
|
||||
)
|
||||
is_bond = (
|
||||
(angles_cos >= min_cos)
|
||||
& (np.sum(vHA**2, axis=-1) <= HA_lim**2)
|
||||
& (np.sum(vDA**2, axis=-1) <= DA_lim**2)
|
||||
)
|
||||
if full_output:
|
||||
return (
|
||||
pairs[is_bond],
|
||||
angles_cos[is_bond],
|
||||
np.sum(vDA[is_bond] ** 2, axis=-1) ** 0.5,
|
||||
)
|
||||
else:
|
||||
return pairs[is_bond]
|
||||
|
@ -2,20 +2,25 @@ import numpy as np
|
||||
|
||||
|
||||
def kww(t, A, τ, β):
|
||||
return A * np.exp(-(t / τ)**β)
|
||||
return A * np.exp(-((t / τ) ** β))
|
||||
|
||||
|
||||
def kww_1e(A, τ, β):
|
||||
return τ * (-np.log(1 / (np.e * A)))**(1 / β)
|
||||
return τ * (-np.log(1 / (np.e * A))) ** (1 / β)
|
||||
|
||||
|
||||
def cole_davidson(w, A, b, t0):
|
||||
P = np.arctan(w * t0)
|
||||
return A * np.cos(P)**b * np.sin(b * P)
|
||||
return A * np.cos(P) ** b * np.sin(b * P)
|
||||
|
||||
|
||||
def cole_cole(w, A, b, t0):
|
||||
return A * (w * t0)**b * np.sin(np.pi * b / 2) / (1 + 2 * (w * t0)**b * np.cos(np.pi * b / 2) + (w * t0)**(2 * b))
|
||||
return (
|
||||
A
|
||||
* (w * t0) ** b
|
||||
* np.sin(np.pi * b / 2)
|
||||
/ (1 + 2 * (w * t0) ** b * np.cos(np.pi * b / 2) + (w * t0) ** (2 * b))
|
||||
)
|
||||
|
||||
|
||||
def havriliak_negami(ω, A, β, α, τ):
|
||||
@ -25,14 +30,14 @@ def havriliak_negami(ω, A, β, α, τ):
|
||||
.. math::
|
||||
\chi_{HN}(\omega) = \Im\left(\frac{A}{(1 + (i\omega\tau)^\alpha)^\beta}\right)
|
||||
"""
|
||||
return -(A / (1 + (1j * ω * τ)**α)**β).imag
|
||||
return -(A / (1 + (1j * ω * τ) ** α) ** β).imag
|
||||
|
||||
|
||||
# fits decay of correlation times, e.g. with distance to pore walls
|
||||
def colen(d, X, t8, A):
|
||||
return t8 * np.exp(A*np.exp(-d/X))
|
||||
return t8 * np.exp(A * np.exp(-d / X))
|
||||
|
||||
|
||||
# fits decay of the plateau height of the overlap function, e.g. with distance to pore walls
|
||||
def colenQ(d, X, Qb, g):
|
||||
return (1-Qb)*np.exp(-(d/X)**g)+Qb
|
||||
return (1 - Qb) * np.exp(-((d / X) ** g)) + Qb
|
||||
|
@ -1,12 +1,15 @@
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger('mdevaluate')
|
||||
logger = logging.getLogger("mdevaluate")
|
||||
logger.setLevel(logging.INFO)
|
||||
stream_handler = logging.StreamHandler()
|
||||
stream_handler.setLevel(logging.INFO)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
formatter = logging.Formatter('{levelname[0]}{levelname[1]}{levelname[2]}[{asctime}]:{funcName}: {message}', style='{')
|
||||
formatter = logging.Formatter(
|
||||
"{levelname[0]}{levelname[1]}{levelname[2]}[{asctime}]:{funcName}: {message}",
|
||||
style="{",
|
||||
)
|
||||
stream_handler.setFormatter(formatter)
|
||||
|
||||
|
||||
|
@ -8,6 +8,7 @@ from itertools import product
|
||||
|
||||
from .logging import logger
|
||||
|
||||
|
||||
def pbc_diff_old(v1, v2, box):
|
||||
"""
|
||||
Calculate the difference of two vestors, considering optional boundary conditions.
|
||||
@ -21,16 +22,19 @@ def pbc_diff_old(v1, v2, box):
|
||||
|
||||
return v
|
||||
|
||||
|
||||
def pbc_diff(v1, v2=None, box=None):
|
||||
if box is None:
|
||||
out = v1 - v2
|
||||
elif len(getattr(box, 'shape', [])) == 1:
|
||||
elif len(getattr(box, "shape", [])) == 1:
|
||||
out = pbc_diff_rect(v1, v2, box)
|
||||
elif len(getattr(box, 'shape', [])) == 2:
|
||||
out = pbc_diff_tric(v1, v2, box)
|
||||
else: raise NotImplementedError("cannot handle box")
|
||||
elif len(getattr(box, "shape", [])) == 2:
|
||||
out = pbc_diff_tric(v1, v2, box)
|
||||
else:
|
||||
raise NotImplementedError("cannot handle box")
|
||||
return out
|
||||
|
||||
|
||||
def pbc_diff_rect(v1, v2, box):
|
||||
"""
|
||||
Calculate the difference of two vectors, considering periodic boundary conditions.
|
||||
@ -38,8 +42,8 @@ def pbc_diff_rect(v1, v2, box):
|
||||
if v2 is None:
|
||||
v = v1
|
||||
else:
|
||||
v = v1 -v2
|
||||
|
||||
v = v1 - v2
|
||||
|
||||
s = v / box
|
||||
v = box * (s - s.round())
|
||||
return v
|
||||
@ -48,94 +52,117 @@ def pbc_diff_rect(v1, v2, box):
|
||||
def pbc_diff_tric(v1, v2=None, box=None):
|
||||
"""
|
||||
difference vector for arbitrary pbc
|
||||
|
||||
|
||||
Args:
|
||||
box_matrix: CoordinateFrame.box
|
||||
"""
|
||||
if len(box.shape) == 1: box = np.diag(box)
|
||||
if v1.shape == (3,): v1 = v1.reshape((1,3)) #quick 'n dirty
|
||||
if v2.shape == (3,): v2 = v2.reshape((1,3))
|
||||
if len(box.shape) == 1:
|
||||
box = np.diag(box)
|
||||
if v1.shape == (3,):
|
||||
v1 = v1.reshape((1, 3)) # quick 'n dirty
|
||||
if v2.shape == (3,):
|
||||
v2 = v2.reshape((1, 3))
|
||||
if box is not None:
|
||||
r3 = np.subtract(v1, v2)
|
||||
r2 = np.subtract(r3, (np.rint(np.divide(r3[:,2],box[2][2])))[:,np.newaxis] * box[2][np.newaxis,:])
|
||||
r1 = np.subtract(r2, (np.rint(np.divide(r2[:,1],box[1][1])))[:,np.newaxis] * box[1][np.newaxis,:])
|
||||
v = np.subtract(r1, (np.rint(np.divide(r1[:,0],box[0][0])))[:,np.newaxis] * box[0][np.newaxis,:])
|
||||
r2 = np.subtract(
|
||||
r3,
|
||||
(np.rint(np.divide(r3[:, 2], box[2][2])))[:, np.newaxis]
|
||||
* box[2][np.newaxis, :],
|
||||
)
|
||||
r1 = np.subtract(
|
||||
r2,
|
||||
(np.rint(np.divide(r2[:, 1], box[1][1])))[:, np.newaxis]
|
||||
* box[1][np.newaxis, :],
|
||||
)
|
||||
v = np.subtract(
|
||||
r1,
|
||||
(np.rint(np.divide(r1[:, 0], box[0][0])))[:, np.newaxis]
|
||||
* box[0][np.newaxis, :],
|
||||
)
|
||||
else:
|
||||
v = v1 - v2
|
||||
return v
|
||||
|
||||
|
||||
def pbc_dist(a1,a2,box = None):
|
||||
return ((pbc_diff(a1,a2,box)**2).sum(axis=1))**0.5
|
||||
def pbc_dist(a1, a2, box=None):
|
||||
return ((pbc_diff(a1, a2, box) ** 2).sum(axis=1)) ** 0.5
|
||||
|
||||
|
||||
def pbc_extend(c, box):
|
||||
"""
|
||||
in: c is frame, box is frame.box
|
||||
out: all atoms in frame and their perio. image (shape => array(len(c)*27,3))
|
||||
in: c is frame, box is frame.box
|
||||
out: all atoms in frame and their perio. image (shape => array(len(c)*27,3))
|
||||
"""
|
||||
c=np.asarray(c)
|
||||
if c.shape == (3,): c = c.reshape((1,3)) #quick 'n dirty
|
||||
comb = np.array([np.asarray(i) for i in product([0,-1,1],[0,-1,1],[0,-1,1])])
|
||||
b_matrices = comb[:,:,np.newaxis]*box[np.newaxis,:,:]
|
||||
b_vectors = b_matrices.sum(axis=1)[np.newaxis,:,:]
|
||||
return (c[:,np.newaxis,:]+b_vectors)
|
||||
|
||||
c = np.asarray(c)
|
||||
if c.shape == (3,):
|
||||
c = c.reshape((1, 3)) # quick 'n dirty
|
||||
comb = np.array(
|
||||
[np.asarray(i) for i in product([0, -1, 1], [0, -1, 1], [0, -1, 1])]
|
||||
)
|
||||
b_matrices = comb[:, :, np.newaxis] * box[np.newaxis, :, :]
|
||||
b_vectors = b_matrices.sum(axis=1)[np.newaxis, :, :]
|
||||
return c[:, np.newaxis, :] + b_vectors
|
||||
|
||||
def pbc_kdtree(v1,box, leafsize = 32, compact_nodes = False, balanced_tree = False):
|
||||
|
||||
def pbc_kdtree(v1, box, leafsize=32, compact_nodes=False, balanced_tree=False):
|
||||
"""
|
||||
kd_tree with periodic images
|
||||
box - whole matrix
|
||||
rest: optional optimization
|
||||
"""
|
||||
r0 = cKDTree(pbc_extend(v1,box).reshape((-1,3)),leafsize ,compact_nodes ,balanced_tree)
|
||||
r0 = cKDTree(
|
||||
pbc_extend(v1, box).reshape((-1, 3)), leafsize, compact_nodes, balanced_tree
|
||||
)
|
||||
return r0
|
||||
|
||||
|
||||
def pbc_kdtree_query(v1,v2,box,n = 1):
|
||||
def pbc_kdtree_query(v1, v2, box, n=1):
|
||||
"""
|
||||
kd_tree query with periodic images
|
||||
"""
|
||||
r0, r1 = pbc_kdtree(v1,box).query(v2,n)
|
||||
r0, r1 = pbc_kdtree(v1, box).query(v2, n)
|
||||
r1 = r1 // 27
|
||||
return r0, r1
|
||||
|
||||
|
||||
def pbc_backfold_rect(act_frame,box_matrix):
|
||||
def pbc_backfold_rect(act_frame, box_matrix):
|
||||
"""
|
||||
mimics "trjconv ... -pbc atom -ur rect"
|
||||
|
||||
folds coords of act_frame in cuboid
|
||||
|
||||
mimics "trjconv ... -pbc atom -ur rect"
|
||||
|
||||
folds coords of act_frame in cuboid
|
||||
|
||||
"""
|
||||
af=np.asarray(act_frame)
|
||||
if af.shape == (3,): act_frame = act_frame.reshape((1,3)) #quick 'n dirty
|
||||
af = np.asarray(act_frame)
|
||||
if af.shape == (3,):
|
||||
act_frame = act_frame.reshape((1, 3)) # quick 'n dirty
|
||||
b = box_matrix
|
||||
c = np.diag(b)/2
|
||||
af = pbc_diff(np.zeros((1,3)),af-c,b)
|
||||
c = np.diag(b) / 2
|
||||
af = pbc_diff(np.zeros((1, 3)), af - c, b)
|
||||
return af + c
|
||||
|
||||
|
||||
def pbc_backfold_compact(act_frame,box_matrix):
|
||||
def pbc_backfold_compact(act_frame, box_matrix):
|
||||
"""
|
||||
mimics "trjconv ... -pbc atom -ur compact"
|
||||
|
||||
mimics "trjconv ... -pbc atom -ur compact"
|
||||
|
||||
folds coords of act_frame in wigner-seitz-cell (e.g. dodecahedron)
|
||||
"""
|
||||
c = act_frame
|
||||
box = box_matrix
|
||||
ctr = box.sum(0)/2
|
||||
c=np.asarray(c)
|
||||
ctr = box.sum(0) / 2
|
||||
c = np.asarray(c)
|
||||
shape = c.shape
|
||||
if shape == (3,):
|
||||
c = c.reshape((1,3))
|
||||
shape = (1,3) #quick 'n dirty
|
||||
comb = np.array([np.asarray(i) for i in product([0,-1,1],[0,-1,1],[0,-1,1])])
|
||||
b_matrices = comb[:,:,np.newaxis]*box[np.newaxis,:,:]
|
||||
b_vectors = b_matrices.sum(axis=1)[np.newaxis,:,:]
|
||||
sc = c[:,np.newaxis,:]+b_vectors
|
||||
w = np.argsort((((sc)-ctr)**2).sum(2),1)[:,0]
|
||||
return sc[range(shape[0]),w]
|
||||
if shape == (3,):
|
||||
c = c.reshape((1, 3))
|
||||
shape = (1, 3) # quick 'n dirty
|
||||
comb = np.array(
|
||||
[np.asarray(i) for i in product([0, -1, 1], [0, -1, 1], [0, -1, 1])]
|
||||
)
|
||||
b_matrices = comb[:, :, np.newaxis] * box[np.newaxis, :, :]
|
||||
b_vectors = b_matrices.sum(axis=1)[np.newaxis, :, :]
|
||||
sc = c[:, np.newaxis, :] + b_vectors
|
||||
w = np.argsort((((sc) - ctr) ** 2).sum(2), 1)[:, 0]
|
||||
return sc[range(shape[0]), w]
|
||||
|
||||
|
||||
def whole(frame):
|
||||
@ -147,11 +174,11 @@ def whole(frame):
|
||||
|
||||
# make sure, residue_ids are sorted, then determine indices at which the res id changes
|
||||
# kind='stable' assures that any existent ordering is preserved
|
||||
logger.debug('Using first atom as reference for whole.')
|
||||
sort_ind = residue_ids.argsort(kind='stable')
|
||||
logger.debug("Using first atom as reference for whole.")
|
||||
sort_ind = residue_ids.argsort(kind="stable")
|
||||
i = np.concatenate([[0], np.where(np.diff(residue_ids[sort_ind]) > 0)[0] + 1])
|
||||
coms = frame[sort_ind[i]][residue_ids - 1]
|
||||
|
||||
|
||||
cor = np.zeros_like(frame)
|
||||
cd = frame - coms
|
||||
n, d = np.where(cd > box / 2 * 0.9)
|
||||
@ -172,7 +199,7 @@ def nojump(frame, usecache=True):
|
||||
selection = frame.selection
|
||||
reader = frame.coordinates.frames
|
||||
if usecache:
|
||||
if not hasattr(reader, '_nojump_cache'):
|
||||
if not hasattr(reader, "_nojump_cache"):
|
||||
reader._nojump_cache = OrderedDict()
|
||||
# make sure to use absolute (non negative) index
|
||||
abstep = frame.step % len(frame.coordinates)
|
||||
@ -185,27 +212,42 @@ def nojump(frame, usecache=True):
|
||||
i0 = 0
|
||||
delta = 0
|
||||
|
||||
delta = delta + np.array(np.vstack(
|
||||
[m[i0:abstep + 1].sum(axis=0) for m in reader.nojump_matrixes]
|
||||
).T) * frame.box.diagonal()
|
||||
delta = (
|
||||
delta
|
||||
+ np.array(
|
||||
np.vstack(
|
||||
[m[i0 : abstep + 1].sum(axis=0) for m in reader.nojump_matrixes]
|
||||
).T
|
||||
)
|
||||
* frame.box.diagonal()
|
||||
)
|
||||
|
||||
reader._nojump_cache[abstep] = delta
|
||||
while len(reader._nojump_cache) > NOJUMP_CACHESIZE:
|
||||
reader._nojump_cache.popitem(last=False)
|
||||
delta = delta[selection, :]
|
||||
else:
|
||||
delta = np.array(np.vstack(
|
||||
[m[:frame.step + 1, selection].sum(axis=0) for m in reader.nojump_matrixes]
|
||||
).T) * frame.box.diagonal()
|
||||
delta = (
|
||||
np.array(
|
||||
np.vstack(
|
||||
[
|
||||
m[: frame.step + 1, selection].sum(axis=0)
|
||||
for m in reader.nojump_matrixes
|
||||
]
|
||||
).T
|
||||
)
|
||||
* frame.box.diagonal()
|
||||
)
|
||||
return frame - delta
|
||||
|
||||
|
||||
def pbc_points(coordinates, box, thickness=0, index=False, shear=False,
|
||||
extra_image=False):
|
||||
def pbc_points(
|
||||
coordinates, box, thickness=0, index=False, shear=False, extra_image=False
|
||||
):
|
||||
"""
|
||||
Returns the points their first periodic images. Does not fold
|
||||
Returns the points their first periodic images. Does not fold
|
||||
them back into the box.
|
||||
Thickness 0 means all 27 boxes. Positive means the box+thickness.
|
||||
Thickness 0 means all 27 boxes. Positive means the box+thickness.
|
||||
Negative values mean that less than the box is returned.
|
||||
index=True also returns the indices with indices of images being their
|
||||
originals values.
|
||||
@ -213,21 +255,28 @@ def pbc_points(coordinates, box, thickness=0, index=False, shear=False,
|
||||
if shear:
|
||||
box[2, 0] = box[2, 0] % box[0, 0]
|
||||
if shear or extra_image:
|
||||
grid = np.array([[i, j, k] for k in [-2, -1, 0, 1, 2]
|
||||
for j in [2, 1, 0, -1, -2] for i in [-2, -1, 0, 1, 2]])
|
||||
grid = np.array(
|
||||
[
|
||||
[i, j, k]
|
||||
for k in [-2, -1, 0, 1, 2]
|
||||
for j in [2, 1, 0, -1, -2]
|
||||
for i in [-2, -1, 0, 1, 2]
|
||||
]
|
||||
)
|
||||
indices = np.tile(np.arange(len(coordinates)), 125)
|
||||
else:
|
||||
grid = np.array([[i, j, k] for k in [-1, 0, 1] for j in [1, 0, -1]
|
||||
for i in [-1, 0, 1]])
|
||||
grid = np.array(
|
||||
[[i, j, k] for k in [-1, 0, 1] for j in [1, 0, -1] for i in [-1, 0, 1]]
|
||||
)
|
||||
indices = np.tile(np.arange(len(coordinates)), 27)
|
||||
coordinates_pbc = np.concatenate([coordinates+v@box for v in grid], axis=0)
|
||||
coordinates_pbc = np.concatenate([coordinates + v @ box for v in grid], axis=0)
|
||||
size = np.diag(box)
|
||||
|
||||
if thickness != 0:
|
||||
mask = np.all(coordinates_pbc > -thickness, axis=1)
|
||||
coordinates_pbc = coordinates_pbc[mask]
|
||||
indices = indices[mask]
|
||||
mask = np.all(coordinates_pbc < size+thickness, axis=1)
|
||||
mask = np.all(coordinates_pbc < size + thickness, axis=1)
|
||||
coordinates_pbc = coordinates_pbc[mask]
|
||||
indices = indices[mask]
|
||||
if index:
|
||||
|
@ -16,7 +16,7 @@ from array import array
|
||||
from zipfile import BadZipFile
|
||||
import builtins
|
||||
import warnings
|
||||
import subprocess
|
||||
import subprocess
|
||||
import re
|
||||
import itertools
|
||||
|
||||
@ -31,11 +31,14 @@ import re
|
||||
class NojumpError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class WrongTopologyError(Exception):
|
||||
pass
|
||||
|
||||
def open_with_mdanalysis(topology, trajectory, cached=False, index_file=None,
|
||||
charges=None, masses=None):
|
||||
|
||||
def open_with_mdanalysis(
|
||||
topology, trajectory, cached=False, index_file=None, charges=None, masses=None
|
||||
):
|
||||
"""Open a the topology and trajectory with mdanalysis."""
|
||||
uni = mdanalysis.Universe(topology, trajectory, convert_units=False)
|
||||
if cached is not False:
|
||||
@ -47,10 +50,10 @@ def open_with_mdanalysis(topology, trajectory, cached=False, index_file=None,
|
||||
else:
|
||||
reader = BaseReader(uni.trajectory)
|
||||
reader.universe = uni
|
||||
if topology.endswith('.tpr'):
|
||||
if topology.endswith(".tpr"):
|
||||
charges = uni.atoms.charges
|
||||
masses = uni.atoms.masses
|
||||
elif topology.endswith('.gro'):
|
||||
elif topology.endswith(".gro"):
|
||||
charges = charges
|
||||
masses = masses
|
||||
else:
|
||||
@ -58,15 +61,19 @@ def open_with_mdanalysis(topology, trajectory, cached=False, index_file=None,
|
||||
indices = None
|
||||
if index_file:
|
||||
indices = load_indices(index_file)
|
||||
|
||||
|
||||
atms = atoms.Atoms(
|
||||
np.stack((uni.atoms.resids, uni.atoms.resnames, uni.atoms.names), axis=1),
|
||||
charges=charges, masses=masses, indices=indices
|
||||
).subset()
|
||||
|
||||
np.stack((uni.atoms.resids, uni.atoms.resnames, uni.atoms.names), axis=1),
|
||||
charges=charges,
|
||||
masses=masses,
|
||||
indices=indices,
|
||||
).subset()
|
||||
|
||||
return atms, reader
|
||||
|
||||
group_re = re.compile('\[ ([-+\w]+) \]')
|
||||
|
||||
group_re = re.compile("\[ ([-+\w]+) \]")
|
||||
|
||||
|
||||
def load_indices(index_file):
|
||||
indices = {}
|
||||
@ -79,13 +86,14 @@ def load_indices(index_file):
|
||||
index_array = indices.get(group_name, [])
|
||||
indices[group_name] = index_array
|
||||
else:
|
||||
elements = line.strip().split('\t')
|
||||
elements = [x.split(' ') for x in elements]
|
||||
elements = line.strip().split("\t")
|
||||
elements = [x.split(" ") for x in elements]
|
||||
elements = itertools.chain(*elements) # make a flat iterator
|
||||
elements = [x for x in elements if x != '']
|
||||
elements = [x for x in elements if x != ""]
|
||||
index_array += [int(x) - 1 for x in elements]
|
||||
return indices
|
||||
|
||||
|
||||
def is_writeable(fname):
|
||||
"""Test if a directory is actually writeable, by writing a temporary file."""
|
||||
fdir = os.path.dirname(fname)
|
||||
@ -95,7 +103,7 @@ def is_writeable(fname):
|
||||
|
||||
if os.access(fdir, os.W_OK):
|
||||
try:
|
||||
with builtins.open(ftmp, 'w'):
|
||||
with builtins.open(ftmp, "w"):
|
||||
pass
|
||||
os.remove(ftmp)
|
||||
return True
|
||||
@ -106,68 +114,70 @@ def is_writeable(fname):
|
||||
|
||||
def nojump_load_filename(reader):
|
||||
directory, fname = path.split(reader.filename)
|
||||
full_path = path.join(directory, '.{}.nojump.npz'.format(fname))
|
||||
full_path = path.join(directory, ".{}.nojump.npz".format(fname))
|
||||
if not is_writeable(directory):
|
||||
user_data_dir = os.path.join("/data/",
|
||||
os.environ['HOME'].split("/")[-1])
|
||||
user_data_dir = os.path.join("/data/", os.environ["HOME"].split("/")[-1])
|
||||
full_path_fallback = os.path.join(
|
||||
os.path.join(user_data_dir, '.mdevaluate/nojump'),
|
||||
directory.lstrip('/'),
|
||||
'.{}.nojump.npz'.format(fname)
|
||||
os.path.join(user_data_dir, ".mdevaluate/nojump"),
|
||||
directory.lstrip("/"),
|
||||
".{}.nojump.npz".format(fname),
|
||||
)
|
||||
if os.path.exists(full_path_fallback):
|
||||
return full_path_fallback
|
||||
if os.path.exists(fname) or is_writeable(directory):
|
||||
return full_path
|
||||
else:
|
||||
user_data_dir = os.path.join("/data/",
|
||||
os.environ['HOME'].split("/")[-1])
|
||||
user_data_dir = os.path.join("/data/", os.environ["HOME"].split("/")[-1])
|
||||
full_path_fallback = os.path.join(
|
||||
os.path.join(user_data_dir, '.mdevaluate/nojump'),
|
||||
directory.lstrip('/'),
|
||||
'.{}.nojump.npz'.format(fname)
|
||||
os.path.join(user_data_dir, ".mdevaluate/nojump"),
|
||||
directory.lstrip("/"),
|
||||
".{}.nojump.npz".format(fname),
|
||||
)
|
||||
return full_path
|
||||
|
||||
|
||||
|
||||
def nojump_save_filename(reader):
|
||||
directory, fname = path.split(reader.filename)
|
||||
full_path = path.join(directory, '.{}.nojump.npz'.format(fname))
|
||||
full_path = path.join(directory, ".{}.nojump.npz".format(fname))
|
||||
if is_writeable(directory):
|
||||
return full_path
|
||||
else:
|
||||
user_data_dir = os.path.join("/data/",
|
||||
os.environ['HOME'].split("/")[-1])
|
||||
user_data_dir = os.path.join("/data/", os.environ["HOME"].split("/")[-1])
|
||||
full_path_fallback = os.path.join(
|
||||
os.path.join(user_data_dir, '.mdevaluate/nojump'),
|
||||
directory.lstrip('/'),
|
||||
'.{}.nojump.npz'.format(fname)
|
||||
os.path.join(user_data_dir, ".mdevaluate/nojump"),
|
||||
directory.lstrip("/"),
|
||||
".{}.nojump.npz".format(fname),
|
||||
)
|
||||
logger.info(
|
||||
"Saving nojump to {}, since original location is not writeable.".format(
|
||||
full_path_fallback
|
||||
)
|
||||
)
|
||||
logger.info('Saving nojump to {}, since original location is not writeable.'.format(full_path_fallback))
|
||||
os.makedirs(os.path.dirname(full_path_fallback), exist_ok=True)
|
||||
return full_path_fallback
|
||||
|
||||
return full_path_fallback
|
||||
|
||||
CSR_ATTRS = ('data', 'indices', 'indptr')
|
||||
|
||||
CSR_ATTRS = ("data", "indices", "indptr")
|
||||
NOJUMP_MAGIC = 2016
|
||||
|
||||
|
||||
def parse_jumps(trajectory):
|
||||
prev = trajectory[0].whole
|
||||
box = prev.box.diagonal()
|
||||
SparseData = namedtuple('SparseData', ['data', 'row', 'col'])
|
||||
SparseData = namedtuple("SparseData", ["data", "row", "col"])
|
||||
jump_data = (
|
||||
SparseData(data=array('b'), row=array('l'), col=array('l')),
|
||||
SparseData(data=array('b'), row=array('l'), col=array('l')),
|
||||
SparseData(data=array('b'), row=array('l'), col=array('l'))
|
||||
SparseData(data=array("b"), row=array("l"), col=array("l")),
|
||||
SparseData(data=array("b"), row=array("l"), col=array("l")),
|
||||
SparseData(data=array("b"), row=array("l"), col=array("l")),
|
||||
)
|
||||
|
||||
for i, curr in enumerate(trajectory):
|
||||
if i % 500 == 0:
|
||||
logger.debug('Parse jumps Step: %d', i)
|
||||
logger.debug("Parse jumps Step: %d", i)
|
||||
delta = ((curr - prev) / box).round().astype(np.int8)
|
||||
prev = curr
|
||||
for d in range(3):
|
||||
col, = np.where(delta[:, d] != 0)
|
||||
(col,) = np.where(delta[:, d] != 0)
|
||||
jump_data[d].col.extend(col)
|
||||
jump_data[d].row.extend([i] * len(col))
|
||||
jump_data[d].data.extend(delta[col, d])
|
||||
@ -179,14 +189,15 @@ def generate_nojump_matrixes(trajectory):
|
||||
"""
|
||||
Create the matrixes with pbc jumps for a trajectory.
|
||||
"""
|
||||
logger.info('generate Nojump Matrixes for: {}'.format(trajectory))
|
||||
logger.info("generate Nojump Matrixes for: {}".format(trajectory))
|
||||
|
||||
jump_data = parse_jumps(trajectory)
|
||||
N = len(trajectory)
|
||||
M = len(trajectory[0])
|
||||
|
||||
trajectory.frames.nojump_matrixes = tuple(
|
||||
sparse.csr_matrix((np.array(m.data), (m.row, m.col)), shape=(N, M)) for m in jump_data
|
||||
sparse.csr_matrix((np.array(m.data), (m.row, m.col)), shape=(N, M))
|
||||
for m in jump_data
|
||||
)
|
||||
save_nojump_matrixes(trajectory.frames)
|
||||
|
||||
@ -194,11 +205,11 @@ def generate_nojump_matrixes(trajectory):
|
||||
def save_nojump_matrixes(reader, matrixes=None):
|
||||
if matrixes is None:
|
||||
matrixes = reader.nojump_matrixes
|
||||
data = {'checksum': checksum(NOJUMP_MAGIC, checksum(reader))}
|
||||
data = {"checksum": checksum(NOJUMP_MAGIC, checksum(reader))}
|
||||
for d, mat in enumerate(matrixes):
|
||||
data['shape'] = mat.shape
|
||||
data["shape"] = mat.shape
|
||||
for attr in CSR_ATTRS:
|
||||
data['{}_{}'.format(attr, d)] = getattr(mat, attr)
|
||||
data["{}_{}".format(attr, d)] = getattr(mat, attr)
|
||||
|
||||
np.savez(nojump_save_filename(reader), **data)
|
||||
|
||||
@ -209,23 +220,25 @@ def load_nojump_matrixes(reader):
|
||||
data = np.load(zipname, allow_pickle=True)
|
||||
except (AttributeError, BadZipFile, OSError):
|
||||
# npz-files can be corrupted, propably a bug for big arrays saved with savez_compressed?
|
||||
logger.info('Removing zip-File: %s', zipname)
|
||||
logger.info("Removing zip-File: %s", zipname)
|
||||
os.remove(nojump_load_filename(reader))
|
||||
return
|
||||
try:
|
||||
if data['checksum'] == checksum(NOJUMP_MAGIC, checksum(reader)):
|
||||
if data["checksum"] == checksum(NOJUMP_MAGIC, checksum(reader)):
|
||||
reader.nojump_matrixes = tuple(
|
||||
sparse.csr_matrix(
|
||||
tuple(data['{}_{}'.format(attr, d)] for attr in CSR_ATTRS),
|
||||
shape=data['shape']
|
||||
tuple(data["{}_{}".format(attr, d)] for attr in CSR_ATTRS),
|
||||
shape=data["shape"],
|
||||
)
|
||||
for d in range(3)
|
||||
)
|
||||
logger.info('Loaded Nojump Matrixes: {}'.format(nojump_load_filename(reader)))
|
||||
logger.info(
|
||||
"Loaded Nojump Matrixes: {}".format(nojump_load_filename(reader))
|
||||
)
|
||||
else:
|
||||
logger.info('Invlaid Nojump Data: {}'.format(nojump_load_filename(reader)))
|
||||
logger.info("Invlaid Nojump Data: {}".format(nojump_load_filename(reader)))
|
||||
except KeyError:
|
||||
logger.info('Removing zip-File: %s', zipname)
|
||||
logger.info("Removing zip-File: %s", zipname)
|
||||
os.remove(nojump_load_filename(reader))
|
||||
return
|
||||
|
||||
@ -238,22 +251,32 @@ def correct_nojump_matrixes_for_whole(trajectory):
|
||||
for d in range(3):
|
||||
reader.nojump_matrixes[d][0] = cor[:, d]
|
||||
save_nojump_matrixes(reader)
|
||||
|
||||
|
||||
|
||||
|
||||
def energy_reader(file, energies=None):
|
||||
"""Reads an gromacs energy file and output the data in a pandas DataFrame.
|
||||
Args:
|
||||
file: Filename of the energy file
|
||||
energies (opt.): Specify energies to extract from the energy file
|
||||
Args:
|
||||
file: Filename of the energy file
|
||||
energies (opt.): Specify energies to extract from the energy file
|
||||
"""
|
||||
if energies is None:
|
||||
energies = np.arange(1, 100).astype('str')
|
||||
energies = np.arange(1, 100).astype("str")
|
||||
directory = file.rsplit("/", 1)[0]
|
||||
ps = subprocess.Popen(("echo", *energies), stdout=subprocess.PIPE)
|
||||
try:
|
||||
subprocess.run(("gmx", "energy", "-f", file, "-o",
|
||||
f"{directory}/tmp.xvg", "-quiet", "-nobackup"),
|
||||
stdin=ps.stdout)
|
||||
subprocess.run(
|
||||
(
|
||||
"gmx",
|
||||
"energy",
|
||||
"-f",
|
||||
file,
|
||||
"-o",
|
||||
f"{directory}/tmp.xvg",
|
||||
"-quiet",
|
||||
"-nobackup",
|
||||
),
|
||||
stdin=ps.stdout,
|
||||
)
|
||||
except FileNotFoundError:
|
||||
print("No GROMACS found!")
|
||||
ps.wait()
|
||||
@ -271,9 +294,9 @@ def energy_reader(file, energies=None):
|
||||
|
||||
data = np.loadtxt(f"{directory}/tmp.xvg", skiprows=header)
|
||||
|
||||
df = pd.DataFrame({"Time":data[:,0]})
|
||||
df = pd.DataFrame({"Time": data[:, 0]})
|
||||
for i, label in enumerate(labels):
|
||||
tmp_df = pd.DataFrame({label:data[:,i+1]})
|
||||
tmp_df = pd.DataFrame({label: data[:, i + 1]})
|
||||
df = pd.concat([df, tmp_df], axis=1)
|
||||
subprocess.run(("rm", f"{directory}/tmp.xvg"))
|
||||
return df
|
||||
@ -289,7 +312,7 @@ class BaseReader:
|
||||
@property
|
||||
def nojump_matrixes(self):
|
||||
if self._nojump_matrixes is None:
|
||||
raise NojumpError('Nojump Data not available: {}'.format(self.filename))
|
||||
raise NojumpError("Nojump Data not available: {}".format(self.filename))
|
||||
return self._nojump_matrixes
|
||||
|
||||
@nojump_matrixes.setter
|
||||
@ -314,12 +337,12 @@ class BaseReader:
|
||||
return len(self.rd)
|
||||
|
||||
def __checksum__(self):
|
||||
if hasattr(self.rd, 'cache'):
|
||||
if hasattr(self.rd, "cache"):
|
||||
# Has an pygmx reader
|
||||
return checksum(self.filename, str(self.rd.cache))
|
||||
elif hasattr(self.rd, '_xdr'):
|
||||
elif hasattr(self.rd, "_xdr"):
|
||||
# Has an mdanalysis reader
|
||||
cache = array('L', self.rd._xdr.offsets.tobytes())
|
||||
cache = array("L", self.rd._xdr.offsets.tobytes())
|
||||
return checksum(self.filename, str(cache))
|
||||
|
||||
|
||||
@ -353,27 +376,25 @@ class CachedReader(BaseReader):
|
||||
|
||||
|
||||
class DelayedReader(BaseReader):
|
||||
|
||||
@property
|
||||
def filename(self):
|
||||
if self.rd is not None:
|
||||
return self.rd.filename
|
||||
else:
|
||||
return self._filename
|
||||
|
||||
|
||||
def __init__(self, filename, reindex=False, ignore_index_timestamps=False):
|
||||
super().__init__(filename, reindex=False, ignore_index_timestamps=False)
|
||||
self.natoms = len(self.rd[0].coordinates)
|
||||
self.cache = self.rd.cache
|
||||
self._filename = self.rd.filename
|
||||
self.rd = None
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.cache)
|
||||
|
||||
|
||||
def _get_item(self, frame):
|
||||
return read_xtcframe_delayed(self.filename, self.cache[frame], self.natoms)
|
||||
|
||||
|
||||
def __getitem__(self, frame):
|
||||
return self._get_item(frame)
|
||||
|
||||
|
@ -33,14 +33,18 @@ def five_point_stencil(xdata, ydata):
|
||||
See: https://en.wikipedia.org/wiki/Five-point_stencil
|
||||
"""
|
||||
return xdata[2:-2], (
|
||||
(-ydata[4:] + 8 * ydata[3:-1] - 8 * ydata[1:-3] + ydata[:-4]) /
|
||||
(3 * (xdata[4:] - xdata[:-4]))
|
||||
(-ydata[4:] + 8 * ydata[3:-1] - 8 * ydata[1:-3] + ydata[:-4])
|
||||
/ (3 * (xdata[4:] - xdata[:-4]))
|
||||
)
|
||||
|
||||
|
||||
def filon_fourier_transformation(time, correlation,
|
||||
frequencies=None, derivative='linear', imag=True,
|
||||
):
|
||||
def filon_fourier_transformation(
|
||||
time,
|
||||
correlation,
|
||||
frequencies=None,
|
||||
derivative="linear",
|
||||
imag=True,
|
||||
):
|
||||
"""
|
||||
Fourier-transformation for slow varrying functions. The filon algorithmus is
|
||||
described in detail in ref [Blochowicz]_, ch. 3.2.3.
|
||||
@ -68,17 +72,15 @@ def filon_fourier_transformation(time, correlation,
|
||||
"""
|
||||
if frequencies is None:
|
||||
f_min = 1 / max(time)
|
||||
f_max = 0.05**(1.2 - max(correlation)) / min(time[time > 0])
|
||||
frequencies = 2 * np.pi * np.logspace(
|
||||
np.log10(f_min), np.log10(f_max), num=60
|
||||
)
|
||||
f_max = 0.05 ** (1.2 - max(correlation)) / min(time[time > 0])
|
||||
frequencies = 2 * np.pi * np.logspace(np.log10(f_min), np.log10(f_max), num=60)
|
||||
frequencies.reshape(1, -1)
|
||||
|
||||
if derivative == 'linear':
|
||||
if derivative == "linear":
|
||||
derivative = (np.diff(correlation) / np.diff(time)).reshape(-1, 1)
|
||||
elif derivative == 'stencil':
|
||||
elif derivative == "stencil":
|
||||
_, derivative = five_point_stencil(time, correlation)
|
||||
time = ((time[2:-1] * time[1:-2])**.5).reshape(-1, 1)
|
||||
time = ((time[2:-1] * time[1:-2]) ** 0.5).reshape(-1, 1)
|
||||
derivative = derivative.reshape(-1, 1)
|
||||
elif np.iterable(derivative) and len(time) is len(derivative):
|
||||
derivative.reshape(-1, 1)
|
||||
@ -88,14 +90,29 @@ def filon_fourier_transformation(time, correlation,
|
||||
)
|
||||
time = time.reshape(-1, 1)
|
||||
|
||||
integral = (np.cos(frequencies * time[1:]) - np.cos(frequencies * time[:-1])) / frequencies**2
|
||||
integral = (
|
||||
np.cos(frequencies * time[1:]) - np.cos(frequencies * time[:-1])
|
||||
) / frequencies**2
|
||||
fourier = (derivative * integral).sum(axis=0)
|
||||
|
||||
if imag:
|
||||
integral = 1j * (np.sin(frequencies * time[1:]) - np.sin(frequencies * time[:-1])) / frequencies**2
|
||||
fourier = fourier + (derivative * integral).sum(axis=0) + 1j * correlation[0] / frequencies
|
||||
integral = (
|
||||
1j
|
||||
* (np.sin(frequencies * time[1:]) - np.sin(frequencies * time[:-1]))
|
||||
/ frequencies**2
|
||||
)
|
||||
fourier = (
|
||||
fourier
|
||||
+ (derivative * integral).sum(axis=0)
|
||||
+ 1j * correlation[0] / frequencies
|
||||
)
|
||||
|
||||
return frequencies.reshape(-1,), fourier
|
||||
return (
|
||||
frequencies.reshape(
|
||||
-1,
|
||||
),
|
||||
fourier,
|
||||
)
|
||||
|
||||
|
||||
def mask2indices(mask):
|
||||
@ -127,22 +144,24 @@ def superpose(x1, y1, x2, y2, N=100, damping=1.0):
|
||||
x_ol = np.logspace(
|
||||
np.log10(max(x1[~reg1][0], x2[~reg2][0]) + 0.001),
|
||||
np.log10(min(x1[~reg1][-1], x2[~reg2][-1]) - 0.001),
|
||||
(sum(~reg1) + sum(~reg2)) / 2
|
||||
(sum(~reg1) + sum(~reg2)) / 2,
|
||||
)
|
||||
|
||||
def w(x):
|
||||
A = x_ol.min()
|
||||
B = x_ol.max()
|
||||
return (np.log10(B / x) / np.log10(B / A))**damping
|
||||
return (np.log10(B / x) / np.log10(B / A)) ** damping
|
||||
|
||||
xdata = np.concatenate((x1[reg1], x_ol, x2[reg2]))
|
||||
y1_interp = interp1d(x1[~reg1], y1[~reg1])
|
||||
y2_interp = interp1d(x2[~reg2], y2[~reg2])
|
||||
ydata = np.concatenate((
|
||||
y1[x1 < x2.min()],
|
||||
w(x_ol) * y1_interp(x_ol) + (1 - w(x_ol)) * y2_interp(x_ol),
|
||||
y2[x2 > x1.max()]
|
||||
))
|
||||
ydata = np.concatenate(
|
||||
(
|
||||
y1[x1 < x2.min()],
|
||||
w(x_ol) * y1_interp(x_ol) + (1 - w(x_ol)) * y2_interp(x_ol),
|
||||
y2[x2 > x1.max()],
|
||||
)
|
||||
)
|
||||
return xdata, ydata
|
||||
|
||||
|
||||
@ -157,9 +176,10 @@ def runningmean(data, nav):
|
||||
Returns:
|
||||
Array of shape (N-(nav-1), )
|
||||
"""
|
||||
return np.convolve(data, np.ones((nav,)) / nav, mode='valid')
|
||||
return np.convolve(data, np.ones((nav,)) / nav, mode="valid")
|
||||
|
||||
def moving_average(A,n=3):
|
||||
|
||||
def moving_average(A, n=3):
|
||||
"""
|
||||
Compute the running mean of an array.
|
||||
Uses the second axis if it is of higher dimensionality.
|
||||
@ -174,15 +194,15 @@ def moving_average(A,n=3):
|
||||
Supports 2D-Arrays.
|
||||
Slower than runningmean for small n but faster for large n.
|
||||
"""
|
||||
k1 = int(n/2)
|
||||
k2 = int((n-1)/2)
|
||||
k1 = int(n / 2)
|
||||
k2 = int((n - 1) / 2)
|
||||
if k2 == 0:
|
||||
if A.ndim > 1:
|
||||
return uniform_filter1d(A,n)[:,k1:]
|
||||
return uniform_filter1d(A,n)[k1:]
|
||||
return uniform_filter1d(A, n)[:, k1:]
|
||||
return uniform_filter1d(A, n)[k1:]
|
||||
if A.ndim > 1:
|
||||
return uniform_filter1d(A,n)[:,k1:-k2]
|
||||
return uniform_filter1d(A,n)[k1:-k2]
|
||||
return uniform_filter1d(A, n)[:, k1:-k2]
|
||||
return uniform_filter1d(A, n)[k1:-k2]
|
||||
|
||||
|
||||
def coherent_sum(func, coord_a, coord_b):
|
||||
@ -235,7 +255,9 @@ def coherent_histogram(func, coord_a, coord_b, bins, distinct=False):
|
||||
if isinstance(func, FunctionType):
|
||||
func = numba.jit(func, nopython=True, cache=True)
|
||||
|
||||
assert np.isclose(np.diff(bins).mean(), np.diff(bins)).all(), 'A regular distribution of bins is required.'
|
||||
assert np.isclose(
|
||||
np.diff(bins).mean(), np.diff(bins)
|
||||
).all(), "A regular distribution of bins is required."
|
||||
hmin = bins[0]
|
||||
hmax = bins[-1]
|
||||
N = len(bins) - 1
|
||||
@ -297,11 +319,11 @@ def Fqt_from_Grt(data, q):
|
||||
if isinstance(data, pd.DataFrame):
|
||||
df = data.copy()
|
||||
else:
|
||||
df = pd.DataFrame(data, columns=['r', 'time', 'G'])
|
||||
df['isf'] = df['G'] * np.sinc(q / np.pi * df['r'])
|
||||
isf = df.groupby('time')['isf'].sum()
|
||||
df = pd.DataFrame(data, columns=["r", "time", "G"])
|
||||
df["isf"] = df["G"] * np.sinc(q / np.pi * df["r"])
|
||||
isf = df.groupby("time")["isf"].sum()
|
||||
if isinstance(data, pd.DataFrame):
|
||||
return pd.DataFrame({'time': isf.index, 'isf': isf.values, 'q': q})
|
||||
return pd.DataFrame({"time": isf.index, "isf": isf.values, "q": q})
|
||||
else:
|
||||
return isf.index, isf.values
|
||||
|
||||
@ -312,6 +334,7 @@ def singledispatchmethod(func):
|
||||
|
||||
def wrapper(*args, **kw):
|
||||
return dispatcher.dispatch(args[1].__class__)(*args, **kw)
|
||||
|
||||
wrapper.register = dispatcher.register
|
||||
functools.update_wrapper(wrapper, func)
|
||||
return wrapper
|
||||
@ -323,7 +346,7 @@ def histogram(data, bins):
|
||||
dx = dbins.mean()
|
||||
if bins.min() == 0 and dbins.std() < 1e-6:
|
||||
logger.debug("Using numpy.bincount for histogramm compuation.")
|
||||
hist = np.bincount((data // dx).astype(int), minlength=len(dbins))[:len(dbins)]
|
||||
hist = np.bincount((data // dx).astype(int), minlength=len(dbins))[: len(dbins)]
|
||||
else:
|
||||
hist = np.histogram(data, bins=bins)[0]
|
||||
|
||||
@ -341,20 +364,22 @@ def quick1etau(t, C, n=7):
|
||||
n is the minimum number of points around 1/e required
|
||||
"""
|
||||
# first rough estimate, the closest time. This is returned if the interpolation fails!
|
||||
tau_est = t[np.argmin(np.fabs(C-np.exp(-1)))]
|
||||
tau_est = t[np.argmin(np.fabs(C - np.exp(-1)))]
|
||||
# reduce the data to points around 1/e
|
||||
k = 0.1
|
||||
mask = (C < np.exp(-1)+k) & (C > np.exp(-1)-k)
|
||||
mask = (C < np.exp(-1) + k) & (C > np.exp(-1) - k)
|
||||
while np.sum(mask) < n:
|
||||
k += 0.01
|
||||
mask = (C < np.exp(-1)+k) & (C > np.exp(-1)-k)
|
||||
mask = (C < np.exp(-1) + k) & (C > np.exp(-1) - k)
|
||||
if k + np.exp(-1) > 1.0:
|
||||
break
|
||||
# if enough points are found, try a curve fit, else and in case of failing keep using the estimate
|
||||
if np.sum(mask) >= n:
|
||||
try:
|
||||
with np.errstate(invalid='ignore'):
|
||||
fit, _ = curve_fit(kww, t[mask], C[mask], p0=[0.9, tau_est, 0.9], maxfev=100000)
|
||||
with np.errstate(invalid="ignore"):
|
||||
fit, _ = curve_fit(
|
||||
kww, t[mask], C[mask], p0=[0.9, tau_est, 0.9], maxfev=100000
|
||||
)
|
||||
tau_est = kww_1e(*fit)
|
||||
except:
|
||||
pass
|
||||
|
27
setup.py
27
setup.py
@ -2,26 +2,23 @@ from setuptools import setup
|
||||
|
||||
|
||||
def get_version(module):
|
||||
version = ''
|
||||
version = ""
|
||||
with open(module) as f:
|
||||
for line in f:
|
||||
if '__version__' in line:
|
||||
version = line.split('=')[-1].strip("' \n\t")
|
||||
if "__version__" in line:
|
||||
version = line.split("=")[-1].strip("' \n\t")
|
||||
break
|
||||
return version
|
||||
|
||||
|
||||
setup(
|
||||
name='mdevaluate',
|
||||
description='Collection of python utilities for md simulations',
|
||||
author_email='niels.mueller@physik.tu-darmstadt.de',
|
||||
|
||||
packages=['mdevaluate',],
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
'index-xtc = mdevaluate.cli:run'
|
||||
]
|
||||
},
|
||||
version='23.4',
|
||||
requires=['numpy', 'scipy'],
|
||||
name="mdevaluate",
|
||||
description="Collection of python utilities for md simulations",
|
||||
author_email="niels.mueller@physik.tu-darmstadt.de",
|
||||
packages=[
|
||||
"mdevaluate",
|
||||
],
|
||||
entry_points={"console_scripts": ["index-xtc = mdevaluate.cli:run"]},
|
||||
version="23.6",
|
||||
requires=["numpy", "scipy"],
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user