11 Commits

Author SHA1 Message Date
robrobo
9ff3badab1 have to wrap delta with np.array to make sure it is ndarray and result stays CoordinateFrame 2025-08-14 16:33:37 +02:00
robrobo
492098fe01 apply selection and scaling with current box after delta in jumps has been cached or calculated directly. this should fix using nojump on NPT simulations 2025-08-09 16:11:24 +02:00
65ac6e9143 Merge pull request 'using pbc_diff now in tetrahedral_order parameter calcul since reference positions will not be periodic images in the default use case' (ation,#5) from fix/tetrahedral_order_pbc into main
Reviewed-on: #5
2025-07-21 11:57:15 +00:00
robrobo
4047db209c using pbc_diff now in tetrahedral_order parameter calculation, since reference positions will not be periodic images in the default use case 2025-07-11 20:59:30 +02:00
90bd90a608 Merge pull request 'Added some ordering to checksums from FunctionType since these could depending on input fail to be deterministic' (#2) from fix_nondeterministic_checksum into main
Reviewed-on: #2
2025-06-16 18:45:48 +00:00
robrobo
67d3e70a66 Added some ordering to checksums from FunctionType since these could depending on input fail to be deterministic 2025-06-16 20:09:50 +02:00
c09549902a Added Robins adjustments for FEL 2024-05-27 14:27:09 +02:00
b7bb8cb379 Merge branch 'refs/heads/mdeval_dev' 2024-05-02 16:18:18 +02:00
7b9f8b6773 Merge branch 'mdeval_dev' 2024-03-05 13:58:15 +01:00
31eb145a13 Merge branch 'mdeval_dev'
# Conflicts:
#	src/mdevaluate/coordinates.py
2024-02-26 14:20:12 +01:00
b5395098ce Fixed iter of Coordinates after last change 2024-02-26 13:57:44 +01:00
4 changed files with 28 additions and 32 deletions

View File

@@ -73,7 +73,9 @@ def checksum(*args, csum=None):
elif isinstance(arg, FunctionType): elif isinstance(arg, FunctionType):
csum.update(strip_comments(inspect.getsource(arg)).encode()) csum.update(strip_comments(inspect.getsource(arg)).encode())
c = inspect.getclosurevars(arg) c = inspect.getclosurevars(arg)
for v in {**c.nonlocals, **c.globals}.values(): merged = {**c.nonlocals, **c.globals}
for key in sorted(merged): # deterministic ordering
v = merged[key]
if v is not arg: if v is not arg:
checksum(v, csum=csum) checksum(v, csum=csum)
elif isinstance(arg, functools.partial): elif isinstance(arg, functools.partial):

View File

@@ -182,10 +182,10 @@ def tetrahedral_order(
) )
# Connection vectors # Connection vectors
neighbors_1 -= atoms neighbors_1 = pbc_diff(neighbors_1, atoms, box=atoms.box)
neighbors_2 -= atoms neighbors_2 = pbc_diff(neighbors_2, atoms, box=atoms.box)
neighbors_3 -= atoms neighbors_3 = pbc_diff(neighbors_3, atoms, box=atoms.box)
neighbors_4 -= atoms neighbors_4 = pbc_diff(neighbors_4, atoms, box=atoms.box)
# Normed Connection vectors # Normed Connection vectors
neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1) neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1)

View File

@@ -4,7 +4,6 @@ from typing import Optional
import numpy as np import numpy as np
from numpy.typing import ArrayLike, NDArray from numpy.typing import ArrayLike, NDArray
from numpy.polynomial.polynomial import Polynomial as Poly from numpy.polynomial.polynomial import Polynomial as Poly
import math
from scipy.spatial import KDTree from scipy.spatial import KDTree
import pandas as pd import pandas as pd
import multiprocessing as mp import multiprocessing as mp
@@ -49,7 +48,7 @@ def _pbc_points_reduced(
def _build_tree(points, box, r_max, pore_geometry): def _build_tree(points, box, r_max, pore_geometry):
if np.all(np.diag(np.diag(box)) == box): if np.all(np.diag(np.diag(box)) == box):
tree = KDTree(points, boxsize=box) tree = KDTree(points % box, boxsize=box)
points_pbc_index = None points_pbc_index = None
else: else:
points_pbc, points_pbc_index = _pbc_points_reduced( points_pbc, points_pbc_index = _pbc_points_reduced(
@@ -79,8 +78,7 @@ def occupation_matrix(
z_bins = np.arange(0, box[2][2] + edge_length, edge_length) z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
bins = [x_bins, y_bins, z_bins] bins = [x_bins, y_bins, z_bins]
# Trajectory is split for parallel computing # Trajectory is split for parallel computing
size = math.ceil(len(frame_indices) / nodes) indices = np.array_split(frame_indices, nodes)
indices = [frame_indices[i : i + size] for i in range(0, len(frame_indices), size)]
pool = mp.Pool(nodes) pool = mp.Pool(nodes)
results = pool.map( results = pool.map(
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
@@ -274,7 +272,11 @@ def distance_resolved_energies(
def find_energy_maxima( def find_energy_maxima(
energy_df: pd.DataFrame, r_min: float, r_max: float energy_df: pd.DataFrame,
r_min: float,
r_max: float,
r_eval: float = None,
degree: int = 2,
) -> pd.DataFrame: ) -> pd.DataFrame:
distances = [] distances = []
energies = [] energies = []
@@ -283,6 +285,9 @@ def find_energy_maxima(
x = np.array(data_d["r"]) x = np.array(data_d["r"])
y = np.array(data_d["energy"]) y = np.array(data_d["energy"])
mask = (x >= r_min) * (x <= r_max) mask = (x >= r_min) * (x <= r_max)
p3 = Poly.fit(x[mask], y[mask], deg=2) p3 = Poly.fit(x[mask], y[mask], deg=degree)
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000)))) if r_eval is None:
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
else:
energies.append(p3(r_eval))
return pd.DataFrame({"d": distances, "energy": energies}) return pd.DataFrame({"d": distances, "energy": energies})

View File

@@ -149,32 +149,21 @@ def nojump(frame: CoordinateFrame, usecache: bool = True) -> CoordinateFrame:
i0 = 0 i0 = 0
delta = 0 delta = 0
delta = ( delta = (delta
delta + np.vstack(
+ np.array( [m[i0 : abstep + 1].sum(axis=0) for m in reader.nojump_matrices]
np.vstack( ).T)
[m[i0 : abstep + 1].sum(axis=0) for m in reader.nojump_matrices]
).T
)
@ frame.box
)
reader._nojump_cache[abstep] = delta reader._nojump_cache[abstep] = delta
while len(reader._nojump_cache) > NOJUMP_CACHESIZE: while len(reader._nojump_cache) > NOJUMP_CACHESIZE:
reader._nojump_cache.popitem(last=False) reader._nojump_cache.popitem(last=False)
delta = delta[selection, :]
else: else:
delta = ( delta = np.vstack(
np.array( [m[: frame.step + 1, selection].sum(axis=0) for m in reader.nojump_matrices]
np.vstack(
[
m[: frame.step + 1, selection].sum(axis=0)
for m in reader.nojump_matrices
]
).T ).T
)
@ frame.box delta = delta[selection, :]
) delta = np.array(delta @ frame.box)
return frame - delta return frame - delta