6 Commits

4 changed files with 20 additions and 28 deletions

View File

@ -73,7 +73,9 @@ def checksum(*args, csum=None):
elif isinstance(arg, FunctionType): elif isinstance(arg, FunctionType):
csum.update(strip_comments(inspect.getsource(arg)).encode()) csum.update(strip_comments(inspect.getsource(arg)).encode())
c = inspect.getclosurevars(arg) c = inspect.getclosurevars(arg)
for v in {**c.nonlocals, **c.globals}.values(): merged = {**c.nonlocals, **c.globals}
for key in sorted(merged): # deterministic ordering
v = merged[key]
if v is not arg: if v is not arg:
checksum(v, csum=csum) checksum(v, csum=csum)
elif isinstance(arg, functools.partial): elif isinstance(arg, functools.partial):

View File

@ -182,10 +182,10 @@ def tetrahedral_order(
) )
# Connection vectors # Connection vectors
neighbors_1 -= atoms neighbors_1 = pbc_diff(neighbors_1, atoms, box=atoms.box)
neighbors_2 -= atoms neighbors_2 = pbc_diff(neighbors_2, atoms, box=atoms.box)
neighbors_3 -= atoms neighbors_3 = pbc_diff(neighbors_3, atoms, box=atoms.box)
neighbors_4 -= atoms neighbors_4 = pbc_diff(neighbors_4, atoms, box=atoms.box)
# Normed Connection vectors # Normed Connection vectors
neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1) neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1)

View File

@ -4,7 +4,6 @@ from typing import Optional
import numpy as np import numpy as np
from numpy.typing import ArrayLike, NDArray from numpy.typing import ArrayLike, NDArray
from numpy.polynomial.polynomial import Polynomial as Poly from numpy.polynomial.polynomial import Polynomial as Poly
import math
from scipy.spatial import KDTree from scipy.spatial import KDTree
import pandas as pd import pandas as pd
import multiprocessing as mp import multiprocessing as mp
@ -49,7 +48,7 @@ def _pbc_points_reduced(
def _build_tree(points, box, r_max, pore_geometry): def _build_tree(points, box, r_max, pore_geometry):
if np.all(np.diag(np.diag(box)) == box): if np.all(np.diag(np.diag(box)) == box):
tree = KDTree(points, boxsize=box) tree = KDTree(points % box, boxsize=box)
points_pbc_index = None points_pbc_index = None
else: else:
points_pbc, points_pbc_index = _pbc_points_reduced( points_pbc, points_pbc_index = _pbc_points_reduced(
@ -79,11 +78,7 @@ def occupation_matrix(
z_bins = np.arange(0, box[2][2] + edge_length, edge_length) z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
bins = [x_bins, y_bins, z_bins] bins = [x_bins, y_bins, z_bins]
# Trajectory is split for parallel computing # Trajectory is split for parallel computing
size = math.ceil(len(frame_indices) / nodes) indices = np.array_split(frame_indices, nodes)
indices = [
np.arange(len(frame_indices))[i : i + size]
for i in range(0, len(frame_indices), size)
]
pool = mp.Pool(nodes) pool = mp.Pool(nodes)
results = pool.map( results = pool.map(
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
@ -277,7 +272,11 @@ def distance_resolved_energies(
def find_energy_maxima( def find_energy_maxima(
energy_df: pd.DataFrame, r_min: float, r_max: float energy_df: pd.DataFrame,
r_min: float,
r_max: float,
r_eval: float = None,
degree: int = 2,
) -> pd.DataFrame: ) -> pd.DataFrame:
distances = [] distances = []
energies = [] energies = []
@ -286,6 +285,9 @@ def find_energy_maxima(
x = np.array(data_d["r"]) x = np.array(data_d["r"])
y = np.array(data_d["energy"]) y = np.array(data_d["energy"])
mask = (x >= r_min) * (x <= r_max) mask = (x >= r_min) * (x <= r_max)
p3 = Poly.fit(x[mask], y[mask], deg=2) p3 = Poly.fit(x[mask], y[mask], deg=degree)
if r_eval is None:
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000)))) energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
else:
energies.append(p3(r_eval))
return pd.DataFrame({"d": distances, "energy": energies}) return pd.DataFrame({"d": distances, "energy": energies})

View File

@ -13,19 +13,7 @@ def trajectory(request):
def test_get_fel(trajectory): def test_get_fel(trajectory):
test_array = np.array( test_array = np.array([210., 214., 209., 192., 200., 193., 230., 218., 266.])
[
184.4909136,
233.79320471,
223.12003988,
228.49746397,
200.5626769,
212.82484221,
165.10818396,
170.74123681,
175.86672931,
]
)
OW = trajectory.subset(atom_name="OW") OW = trajectory.subset(atom_name="OW")
box = trajectory[0].box box = trajectory[0].box