Compare commits
10 Commits
b7bb8cb379
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 4f35a234c3 | |||
| 893bf31292 | |||
| cf7ef06c67 | |||
|
|
9ff3badab1 | ||
|
|
492098fe01 | ||
| 65ac6e9143 | |||
|
|
4047db209c | ||
| 90bd90a608 | |||
|
|
67d3e70a66 | ||
| c09549902a |
@@ -26,9 +26,13 @@ time, msd = md.correlation.shifted_correlation(
|
||||
|
||||
## Installation
|
||||
|
||||
=== DEPRECATED: 2025-08-19 ===
|
||||
The package requires the Python package [pygmx](https://github.com/mdevaluate/pygmx),
|
||||
which handles reading of Gromacs file formats.
|
||||
Installation of pygmx is described in its own repository.
|
||||
=== DEPRECATED: 2025-08-19 ===
|
||||
|
||||
The package requires the Python package [pygmx](https://github.com/mdevaluate/pygmx),
|
||||
|
||||
The mdevaluate package itself is plain Python code and, hence, can be imported from its directory directly,
|
||||
or may be installed via setuptools to the local Python environment by running
|
||||
|
||||
71
create_mdevaluate_module.sh
Executable file
71
create_mdevaluate_module.sh
Executable file
@@ -0,0 +1,71 @@
|
||||
#!/bin/bash
|
||||
|
||||
CONDA_VERSION=2024.10
|
||||
PYTHON_VERSION=3.12
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "No argument supplied, version to create expected"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
if [ ! -w "/nfsopt/mdevaluate"]; then
|
||||
echo "Please remount /nfsopt writable"
|
||||
exit 2
|
||||
fi
|
||||
|
||||
MD_VERSION=$1
|
||||
|
||||
# purge evtl. loaded modules
|
||||
module purge
|
||||
|
||||
|
||||
echo "Create mdevaluate Python environemnt using conda"
|
||||
echo "Using conda version: $CONDA_VERSION"
|
||||
echo "Using Python version: $PYTHON_VERSION"
|
||||
|
||||
module load anaconda3/$CONDA_VERSION
|
||||
conda create -y --prefix /nfsopt/mdevaluate/mdevaluate-${MD_VERSION} \
|
||||
python=$PYTHON_VERSION
|
||||
module purge
|
||||
|
||||
echo "Create modulefile for mdevaluate/$MD_VERSION"
|
||||
cat > /nfsopt/modulefiles/mdevaluate/$MD_VERSION <<EOF
|
||||
#%Module1.0#####################################################################
|
||||
##
|
||||
## dot modulefile
|
||||
##
|
||||
## modulefiles/dot. Generated from dot.in by configure.
|
||||
##
|
||||
|
||||
module-whatis "Enables the mdevaluate Python environment."
|
||||
|
||||
set version ${MD_VERSION}
|
||||
set module_path /nfsopt/mdevaluate/mdevaluate-\$version/bin
|
||||
|
||||
prepend-path PATH \$module_path
|
||||
|
||||
EOF
|
||||
|
||||
echo "Loading mdevaluate environment and install packages"
|
||||
module load mdevaluate/${MD_VERSION}
|
||||
pip install jupyter \
|
||||
spyder \
|
||||
mdanalysis \
|
||||
pathos \
|
||||
pandas \
|
||||
dask \
|
||||
sqlalchemy \
|
||||
psycopg2-binary \
|
||||
trimesh \
|
||||
pyvista \
|
||||
seaborn \
|
||||
black \
|
||||
black[jupyter] \
|
||||
tables \
|
||||
pyedr \
|
||||
pytest
|
||||
|
||||
pip install git+https://gitea.pkm.physik.tu-darmstadt.de/IPKM/mdevaluate.git
|
||||
pip install git+https://gitea.pkm.physik.tu-darmstadt.de/IPKM/python-store.git
|
||||
pip install git+https://gitea.pkm.physik.tu-darmstadt.de/IPKM/python-tudplot.git
|
||||
@@ -73,7 +73,9 @@ def checksum(*args, csum=None):
|
||||
elif isinstance(arg, FunctionType):
|
||||
csum.update(strip_comments(inspect.getsource(arg)).encode())
|
||||
c = inspect.getclosurevars(arg)
|
||||
for v in {**c.nonlocals, **c.globals}.values():
|
||||
merged = {**c.nonlocals, **c.globals}
|
||||
for key in sorted(merged): # deterministic ordering
|
||||
v = merged[key]
|
||||
if v is not arg:
|
||||
checksum(v, csum=csum)
|
||||
elif isinstance(arg, functools.partial):
|
||||
|
||||
@@ -182,10 +182,10 @@ def tetrahedral_order(
|
||||
)
|
||||
|
||||
# Connection vectors
|
||||
neighbors_1 -= atoms
|
||||
neighbors_2 -= atoms
|
||||
neighbors_3 -= atoms
|
||||
neighbors_4 -= atoms
|
||||
neighbors_1 = pbc_diff(neighbors_1, atoms, box=atoms.box)
|
||||
neighbors_2 = pbc_diff(neighbors_2, atoms, box=atoms.box)
|
||||
neighbors_3 = pbc_diff(neighbors_3, atoms, box=atoms.box)
|
||||
neighbors_4 = pbc_diff(neighbors_4, atoms, box=atoms.box)
|
||||
|
||||
# Normed Connection vectors
|
||||
neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1)
|
||||
|
||||
@@ -4,7 +4,6 @@ from typing import Optional
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.polynomial.polynomial import Polynomial as Poly
|
||||
import math
|
||||
from scipy.spatial import KDTree
|
||||
import pandas as pd
|
||||
import multiprocessing as mp
|
||||
@@ -49,7 +48,7 @@ def _pbc_points_reduced(
|
||||
|
||||
def _build_tree(points, box, r_max, pore_geometry):
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
tree = KDTree(points % box, boxsize=box)
|
||||
points_pbc_index = None
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
@@ -79,8 +78,7 @@ def occupation_matrix(
|
||||
z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
|
||||
bins = [x_bins, y_bins, z_bins]
|
||||
# Trajectory is split for parallel computing
|
||||
size = math.ceil(len(frame_indices) / nodes)
|
||||
indices = [frame_indices[i : i + size] for i in range(0, len(frame_indices), size)]
|
||||
indices = np.array_split(frame_indices, nodes)
|
||||
pool = mp.Pool(nodes)
|
||||
results = pool.map(
|
||||
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
|
||||
@@ -274,7 +272,11 @@ def distance_resolved_energies(
|
||||
|
||||
|
||||
def find_energy_maxima(
|
||||
energy_df: pd.DataFrame, r_min: float, r_max: float
|
||||
energy_df: pd.DataFrame,
|
||||
r_min: float,
|
||||
r_max: float,
|
||||
r_eval: float = None,
|
||||
degree: int = 2,
|
||||
) -> pd.DataFrame:
|
||||
distances = []
|
||||
energies = []
|
||||
@@ -283,6 +285,9 @@ def find_energy_maxima(
|
||||
x = np.array(data_d["r"])
|
||||
y = np.array(data_d["energy"])
|
||||
mask = (x >= r_min) * (x <= r_max)
|
||||
p3 = Poly.fit(x[mask], y[mask], deg=2)
|
||||
p3 = Poly.fit(x[mask], y[mask], deg=degree)
|
||||
if r_eval is None:
|
||||
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
|
||||
else:
|
||||
energies.append(p3(r_eval))
|
||||
return pd.DataFrame({"d": distances, "energy": energies})
|
||||
|
||||
@@ -149,32 +149,21 @@ def nojump(frame: CoordinateFrame, usecache: bool = True) -> CoordinateFrame:
|
||||
i0 = 0
|
||||
delta = 0
|
||||
|
||||
delta = (
|
||||
delta
|
||||
+ np.array(
|
||||
np.vstack(
|
||||
delta = (delta
|
||||
+ np.vstack(
|
||||
[m[i0 : abstep + 1].sum(axis=0) for m in reader.nojump_matrices]
|
||||
).T
|
||||
)
|
||||
@ frame.box
|
||||
)
|
||||
).T)
|
||||
|
||||
reader._nojump_cache[abstep] = delta
|
||||
while len(reader._nojump_cache) > NOJUMP_CACHESIZE:
|
||||
reader._nojump_cache.popitem(last=False)
|
||||
delta = delta[selection, :]
|
||||
else:
|
||||
delta = (
|
||||
np.array(
|
||||
np.vstack(
|
||||
[
|
||||
m[: frame.step + 1, selection].sum(axis=0)
|
||||
for m in reader.nojump_matrices
|
||||
]
|
||||
delta = np.vstack(
|
||||
[m[: frame.step + 1, selection].sum(axis=0) for m in reader.nojump_matrices]
|
||||
).T
|
||||
)
|
||||
@ frame.box
|
||||
)
|
||||
|
||||
delta = delta[selection, :]
|
||||
delta = np.array(delta @ frame.box)
|
||||
return frame - delta
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user