|
|
|
@ -4,7 +4,6 @@ from typing import Optional
|
|
|
|
|
import numpy as np
|
|
|
|
|
from numpy.typing import ArrayLike, NDArray
|
|
|
|
|
from numpy.polynomial.polynomial import Polynomial as Poly
|
|
|
|
|
import math
|
|
|
|
|
from scipy.spatial import KDTree
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import multiprocessing as mp
|
|
|
|
@ -49,7 +48,7 @@ def _pbc_points_reduced(
|
|
|
|
|
|
|
|
|
|
def _build_tree(points, box, r_max, pore_geometry):
|
|
|
|
|
if np.all(np.diag(np.diag(box)) == box):
|
|
|
|
|
tree = KDTree(points, boxsize=box)
|
|
|
|
|
tree = KDTree(points % box, boxsize=box)
|
|
|
|
|
points_pbc_index = None
|
|
|
|
|
else:
|
|
|
|
|
points_pbc, points_pbc_index = _pbc_points_reduced(
|
|
|
|
@ -79,8 +78,7 @@ def occupation_matrix(
|
|
|
|
|
z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
|
|
|
|
|
bins = [x_bins, y_bins, z_bins]
|
|
|
|
|
# Trajectory is split for parallel computing
|
|
|
|
|
size = math.ceil(len(frame_indices) / nodes)
|
|
|
|
|
indices = [frame_indices[i : i + size] for i in range(0, len(frame_indices), size)]
|
|
|
|
|
indices = np.array_split(frame_indices, nodes)
|
|
|
|
|
pool = mp.Pool(nodes)
|
|
|
|
|
results = pool.map(
|
|
|
|
|
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
|
|
|
|
@ -274,7 +272,11 @@ def distance_resolved_energies(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_energy_maxima(
|
|
|
|
|
energy_df: pd.DataFrame, r_min: float, r_max: float
|
|
|
|
|
energy_df: pd.DataFrame,
|
|
|
|
|
r_min: float,
|
|
|
|
|
r_max: float,
|
|
|
|
|
r_eval: float = None,
|
|
|
|
|
degree: int = 2,
|
|
|
|
|
) -> pd.DataFrame:
|
|
|
|
|
distances = []
|
|
|
|
|
energies = []
|
|
|
|
@ -283,6 +285,9 @@ def find_energy_maxima(
|
|
|
|
|
x = np.array(data_d["r"])
|
|
|
|
|
y = np.array(data_d["energy"])
|
|
|
|
|
mask = (x >= r_min) * (x <= r_max)
|
|
|
|
|
p3 = Poly.fit(x[mask], y[mask], deg=2)
|
|
|
|
|
p3 = Poly.fit(x[mask], y[mask], deg=degree)
|
|
|
|
|
if r_eval is None:
|
|
|
|
|
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
|
|
|
|
|
else:
|
|
|
|
|
energies.append(p3(r_eval))
|
|
|
|
|
return pd.DataFrame({"d": distances, "energy": energies})
|
|
|
|
|