|
|
|
@ -13,9 +13,95 @@ from .pbc import pbc_diff, pbc_points
|
|
|
|
|
from .coordinates import Coordinates, CoordinateFrame, displacements_without_drift
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def log_indices(first: int, last: int, num: int = 100) -> np.ndarray:
|
|
|
|
|
ls = np.logspace(0, np.log10(last - first + 1), num=num)
|
|
|
|
|
return np.unique(np.int_(ls) - 1 + first)
|
|
|
|
|
def _is_multi_selector(selection):
|
|
|
|
|
if len(selection) == 0:
|
|
|
|
|
return False
|
|
|
|
|
elif (
|
|
|
|
|
isinstance(selection[0], int)
|
|
|
|
|
or isinstance(selection[0], bool)
|
|
|
|
|
or isinstance(selection[0], np.integer)
|
|
|
|
|
or isinstance(selection[0], np.bool_)
|
|
|
|
|
):
|
|
|
|
|
return False
|
|
|
|
|
else:
|
|
|
|
|
for indices in selection:
|
|
|
|
|
if len(indices) == 0:
|
|
|
|
|
continue
|
|
|
|
|
elif (
|
|
|
|
|
isinstance(indices[0], int)
|
|
|
|
|
or isinstance(indices[0], bool)
|
|
|
|
|
or isinstance(indices[0], np.integer)
|
|
|
|
|
or isinstance(indices[0], np.bool_)
|
|
|
|
|
):
|
|
|
|
|
return True
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"selector has more than two dimensions or does not "
|
|
|
|
|
"contain int or bool types"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _calc_correlation(
|
|
|
|
|
frames: Coordinates,
|
|
|
|
|
start_frame: CoordinateFrame,
|
|
|
|
|
function: Callable,
|
|
|
|
|
selection: np.ndarray,
|
|
|
|
|
shifted_idx: np.ndarray,
|
|
|
|
|
) -> np.ndarray:
|
|
|
|
|
if len(selection) == 0:
|
|
|
|
|
correlation = np.zeros(len(shifted_idx))
|
|
|
|
|
else:
|
|
|
|
|
start = start_frame[selection]
|
|
|
|
|
correlation = np.array(
|
|
|
|
|
[
|
|
|
|
|
function(start, frames[frame_index][selection])
|
|
|
|
|
for frame_index in shifted_idx
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
return correlation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _calc_correlation_multi(
|
|
|
|
|
frames: Coordinates,
|
|
|
|
|
start_frame: CoordinateFrame,
|
|
|
|
|
function: Callable,
|
|
|
|
|
selection: np.ndarray,
|
|
|
|
|
shifted_idx: np.ndarray,
|
|
|
|
|
) -> np.ndarray:
|
|
|
|
|
correlations = np.zeros((len(selection), len(shifted_idx)))
|
|
|
|
|
for i, frame_index in enumerate(shifted_idx):
|
|
|
|
|
frame = frames[frame_index]
|
|
|
|
|
for j, current_selection in enumerate(selection):
|
|
|
|
|
if len(selection) == 0:
|
|
|
|
|
correlations[j, i] = 0
|
|
|
|
|
else:
|
|
|
|
|
correlations[j, i] = function(
|
|
|
|
|
start_frame[current_selection], frame[current_selection]
|
|
|
|
|
)
|
|
|
|
|
return correlations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _average_correlation(result):
|
|
|
|
|
averaged_result = []
|
|
|
|
|
for n in range(result.shape[1]):
|
|
|
|
|
clean_result = []
|
|
|
|
|
for entry in result[:, n]:
|
|
|
|
|
if np.all(entry == 0):
|
|
|
|
|
continue
|
|
|
|
|
else:
|
|
|
|
|
clean_result.append(entry)
|
|
|
|
|
averaged_result.append(np.average(np.array(clean_result), axis=0))
|
|
|
|
|
return np.array(averaged_result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _average_correlation_multi(result):
|
|
|
|
|
clean_result = []
|
|
|
|
|
for entry in result:
|
|
|
|
|
if np.all(entry == 0):
|
|
|
|
|
continue
|
|
|
|
|
else:
|
|
|
|
|
clean_result.append(entry)
|
|
|
|
|
return np.average(np.array(clean_result), axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@autosave_data(2)
|
|
|
|
@ -28,113 +114,82 @@ def shifted_correlation(
|
|
|
|
|
window: float = 0.5,
|
|
|
|
|
average: bool = True,
|
|
|
|
|
points: int = 100,
|
|
|
|
|
) -> (np.ndarray, np.ndarray):
|
|
|
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
|
|
|
"""Compute a time-dependent correlation function for a given trajectory.
|
|
|
|
|
|
|
|
|
|
To improve statistics, multiple (possibly overlapping) windows will be
|
|
|
|
|
layed over the whole trajectory and the correlation is computed for them separately.
|
|
|
|
|
The start frames of the windows are spaced linearly over the valid region of
|
|
|
|
|
the trajectory (skipping frames in the beginning given by skip parameter).
|
|
|
|
|
|
|
|
|
|
The points within each window are spaced logarithmically.
|
|
|
|
|
|
|
|
|
|
Only a certain subset of the given atoms may be selected for each window
|
|
|
|
|
individually using a selector function.
|
|
|
|
|
|
|
|
|
|
Note that this function is specifically optimized for multi selectors, which select
|
|
|
|
|
multiple selection sets per window, for which the correlation is to be computed
|
|
|
|
|
separately.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Arguments
|
|
|
|
|
---------
|
|
|
|
|
function:
|
|
|
|
|
The (correlation) function to evaluate.
|
|
|
|
|
Should be of the form (CoordinateFrame, CoordinateFrame) -> float
|
|
|
|
|
|
|
|
|
|
frames:
|
|
|
|
|
Trajectory to evaluate on
|
|
|
|
|
|
|
|
|
|
selector: (optional)
|
|
|
|
|
Selection function so select only certain selection sets for each start frame.
|
|
|
|
|
Should be of the form
|
|
|
|
|
(CoordinateFrame) -> list[A]
|
|
|
|
|
where A is something you can index an ndarray with.
|
|
|
|
|
For example a list of indices or a bool array.
|
|
|
|
|
Must return the same number of selection sets for every frame.
|
|
|
|
|
|
|
|
|
|
segments:
|
|
|
|
|
Number of start frames
|
|
|
|
|
|
|
|
|
|
skip:
|
|
|
|
|
Percentage of trajectory to skip from the start
|
|
|
|
|
|
|
|
|
|
window:
|
|
|
|
|
Length of each segment given as percentage of trajectory
|
|
|
|
|
|
|
|
|
|
average:
|
|
|
|
|
Whether to return averaged results.
|
|
|
|
|
See below for details on the returned ndarray.
|
|
|
|
|
|
|
|
|
|
points:
|
|
|
|
|
Number of points per segment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
times: ndarray
|
|
|
|
|
1d array of time differences to start frame
|
|
|
|
|
result: ndarray
|
|
|
|
|
2d ndarray of averaged (or non-averaged) correlations.
|
|
|
|
|
|
|
|
|
|
When average==True (default) the returned array will be of the shape (S, P)
|
|
|
|
|
where S is the number of selection sets and P the number of points per window.
|
|
|
|
|
For selection sets that where empty for all start frames all data points will be
|
|
|
|
|
zero.
|
|
|
|
|
|
|
|
|
|
When average==False the returned array will be of shape (W, S) with
|
|
|
|
|
dtype=object. The elements are either ndarrays of shape (P,) containing the
|
|
|
|
|
correlation data for the specific window and selection set or None if the
|
|
|
|
|
corresponding selection set was empty.
|
|
|
|
|
W is the number of segments (windows).
|
|
|
|
|
S and P are the same as for average==True.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
Calculate the time series for a correlation function.
|
|
|
|
|
|
|
|
|
|
The times at which the correlation is calculated are determined by
|
|
|
|
|
a logarithmic distribution.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
function: The function that should be correlated
|
|
|
|
|
frames: The coordinates of the simulation data
|
|
|
|
|
selector (opt.):
|
|
|
|
|
A function that returns the indices depending on
|
|
|
|
|
the staring frame for which particles the
|
|
|
|
|
correlation should be calculated.
|
|
|
|
|
segments (int, opt.):
|
|
|
|
|
The number of segments the time window will be
|
|
|
|
|
shifted
|
|
|
|
|
skip (float, opt.):
|
|
|
|
|
The fraction of the trajectory that will be skipped
|
|
|
|
|
at the beginning, if this is None the start index
|
|
|
|
|
of the frames slice will be used, which defaults
|
|
|
|
|
to 0.1.
|
|
|
|
|
window (float, opt.):
|
|
|
|
|
The fraction of the simulation the time series will
|
|
|
|
|
cover
|
|
|
|
|
average (bool, opt.):
|
|
|
|
|
If True, returns averaged correlation function
|
|
|
|
|
points (int, opt.):
|
|
|
|
|
The number of timeshifts for which the correlation
|
|
|
|
|
should be calculated
|
|
|
|
|
Returns:
|
|
|
|
|
tuple:
|
|
|
|
|
A list of length N that contains the timeshiftes of the frames at which
|
|
|
|
|
the time series was calculated and a numpy array of shape (segments, N)
|
|
|
|
|
that holds the (non-avaraged) correlation data
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
Calculating the mean square displacement of a coordinate object
|
|
|
|
|
named ``coords``:
|
|
|
|
|
|
|
|
|
|
>>> time, data = shifted_correlation(msd, coords)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def get_correlation(
|
|
|
|
|
frames: CoordinateFrame,
|
|
|
|
|
start_frame: CoordinateFrame,
|
|
|
|
|
index: np.ndarray,
|
|
|
|
|
shifted_idx: np.ndarray,
|
|
|
|
|
) -> np.ndarray:
|
|
|
|
|
if len(index) == 0:
|
|
|
|
|
correlation = np.zeros(len(shifted_idx))
|
|
|
|
|
else:
|
|
|
|
|
start = frames[start_frame][index]
|
|
|
|
|
correlation = np.array(
|
|
|
|
|
[function(start, frames[frame][index]) for frame in shifted_idx]
|
|
|
|
|
)
|
|
|
|
|
return correlation
|
|
|
|
|
|
|
|
|
|
def apply_selector(
|
|
|
|
|
start_frame: CoordinateFrame,
|
|
|
|
|
frames: CoordinateFrame,
|
|
|
|
|
idx: np.ndarray,
|
|
|
|
|
selector: Optional[Callable] = None,
|
|
|
|
|
):
|
|
|
|
|
shifted_idx = idx + start_frame
|
|
|
|
|
|
|
|
|
|
if selector is None:
|
|
|
|
|
index = np.arange(len(frames[start_frame]))
|
|
|
|
|
return get_correlation(frames, start_frame, index, shifted_idx)
|
|
|
|
|
else:
|
|
|
|
|
index = selector(frames[start_frame])
|
|
|
|
|
if len(index) == 0:
|
|
|
|
|
return np.zeros(len(shifted_idx))
|
|
|
|
|
|
|
|
|
|
elif (
|
|
|
|
|
isinstance(index[0], int)
|
|
|
|
|
or isinstance(index[0], bool)
|
|
|
|
|
or isinstance(index[0], np.integer)
|
|
|
|
|
or isinstance(index[0], np.bool_)
|
|
|
|
|
):
|
|
|
|
|
return get_correlation(frames, start_frame, index, shifted_idx)
|
|
|
|
|
else:
|
|
|
|
|
correlations = []
|
|
|
|
|
for ind in index:
|
|
|
|
|
if len(ind) == 0:
|
|
|
|
|
correlations.append(np.zeros(len(shifted_idx)))
|
|
|
|
|
|
|
|
|
|
elif (
|
|
|
|
|
isinstance(ind[0], int)
|
|
|
|
|
or isinstance(ind[0], bool)
|
|
|
|
|
or isinstance(ind[0], np.integer)
|
|
|
|
|
or isinstance(ind[0], np.bool_)
|
|
|
|
|
):
|
|
|
|
|
correlations.append(
|
|
|
|
|
get_correlation(frames, start_frame, ind, shifted_idx)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"selector has more than two dimensions or does not "
|
|
|
|
|
"contain int or bool types"
|
|
|
|
|
)
|
|
|
|
|
return correlations
|
|
|
|
|
|
|
|
|
|
if 1 - skip < window:
|
|
|
|
|
window = 1 - skip
|
|
|
|
|
|
|
|
|
|
start_frames = np.unique(
|
|
|
|
|
start_frame_indices = np.unique(
|
|
|
|
|
np.linspace(
|
|
|
|
|
len(frames) * skip,
|
|
|
|
|
len(frames) * (1 - window),
|
|
|
|
@ -144,28 +199,44 @@ def shifted_correlation(
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
num_frames = int(len(frames) * window)
|
|
|
|
|
ls = np.logspace(0, np.log10(num_frames + 1), num=points)
|
|
|
|
|
idx = np.unique(np.int_(ls) - 1)
|
|
|
|
|
t = np.array([frames[i].time for i in idx]) - frames[0].time
|
|
|
|
|
|
|
|
|
|
result = np.array(
|
|
|
|
|
[
|
|
|
|
|
apply_selector(start_frame, frames=frames, idx=idx, selector=selector)
|
|
|
|
|
for start_frame in start_frames
|
|
|
|
|
]
|
|
|
|
|
num_frames_per_window = int(len(frames) * window)
|
|
|
|
|
logspaced_indices = np.logspace(0, np.log10(num_frames_per_window + 1), num=points)
|
|
|
|
|
logspaced_indices = np.unique(np.int_(logspaced_indices) - 1)
|
|
|
|
|
logspaced_time = (
|
|
|
|
|
np.array([frames[i].time for i in logspaced_indices]) - frames[0].time
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if selector is None:
|
|
|
|
|
multi_selector = False
|
|
|
|
|
else:
|
|
|
|
|
selection = selector(frames[0])
|
|
|
|
|
multi_selector = _is_multi_selector(selection)
|
|
|
|
|
|
|
|
|
|
result = []
|
|
|
|
|
for start_frame_index in start_frame_indices:
|
|
|
|
|
shifted_idx = logspaced_indices + start_frame_index
|
|
|
|
|
start_frame = frames[start_frame_index]
|
|
|
|
|
if selector is None:
|
|
|
|
|
selection = np.arange(len(start_frame))
|
|
|
|
|
else:
|
|
|
|
|
selection = selector(start_frame)
|
|
|
|
|
if multi_selector:
|
|
|
|
|
result_segment = _calc_correlation_multi(
|
|
|
|
|
frames, start_frame, function, selection, shifted_idx
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
result_segment = _calc_correlation(
|
|
|
|
|
frames, start_frame, function, selection, shifted_idx
|
|
|
|
|
)
|
|
|
|
|
result.append(result_segment)
|
|
|
|
|
result = np.array(result)
|
|
|
|
|
|
|
|
|
|
if average:
|
|
|
|
|
clean_result = []
|
|
|
|
|
for entry in result:
|
|
|
|
|
if np.all(entry == 0):
|
|
|
|
|
continue
|
|
|
|
|
else:
|
|
|
|
|
clean_result.append(entry)
|
|
|
|
|
result = np.array(clean_result)
|
|
|
|
|
result = np.average(result, axis=0)
|
|
|
|
|
return t, result
|
|
|
|
|
if multi_selector:
|
|
|
|
|
result = _average_correlation_multi(result)
|
|
|
|
|
else:
|
|
|
|
|
result = _average_correlation(result)
|
|
|
|
|
return logspaced_time, result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def msd(
|
|
|
|
@ -184,11 +255,11 @@ def msd(
|
|
|
|
|
if axis == "all":
|
|
|
|
|
return (displacements**2).sum(axis=1).mean()
|
|
|
|
|
elif axis == "xy" or axis == "yx":
|
|
|
|
|
return (displacements[:, [0, 1]]**2).sum(axis=1).mean()
|
|
|
|
|
return (displacements[:, [0, 1]] ** 2).sum(axis=1).mean()
|
|
|
|
|
elif axis == "xz" or axis == "zx":
|
|
|
|
|
return (displacements[:, [0, 2]]**2).sum(axis=1).mean()
|
|
|
|
|
return (displacements[:, [0, 2]] ** 2).sum(axis=1).mean()
|
|
|
|
|
elif axis == "yz" or axis == "zy":
|
|
|
|
|
return (displacements[:, [1, 2]]**2).sum(axis=1).mean()
|
|
|
|
|
return (displacements[:, [1, 2]] ** 2).sum(axis=1).mean()
|
|
|
|
|
elif axis == "x":
|
|
|
|
|
return (displacements[:, 0] ** 2).mean()
|
|
|
|
|
elif axis == "y":
|
|
|
|
@ -218,13 +289,13 @@ def isf(
|
|
|
|
|
distance = (displacements**2).sum(axis=1) ** 0.5
|
|
|
|
|
return np.sinc(distance * q / np.pi).mean()
|
|
|
|
|
elif axis == "xy" or axis == "yx":
|
|
|
|
|
distance = (displacements[:, [0, 1]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
distance = (displacements[:, [0, 1]] ** 2).sum(axis=1) ** 0.5
|
|
|
|
|
return np.real(jn(0, distance * q)).mean()
|
|
|
|
|
elif axis == "xz" or axis == "zx":
|
|
|
|
|
distance = (displacements[:, [0, 2]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
distance = (displacements[:, [0, 2]] ** 2).sum(axis=1) ** 0.5
|
|
|
|
|
return np.real(jn(0, distance * q)).mean()
|
|
|
|
|
elif axis == "yz" or axis == "zy":
|
|
|
|
|
distance = (displacements[:, [1, 2]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
distance = (displacements[:, [1, 2]] ** 2).sum(axis=1) ** 0.5
|
|
|
|
|
return np.real(jn(0, distance * q)).mean()
|
|
|
|
|
elif axis == "x":
|
|
|
|
|
distance = np.abs(displacements[:, 0])
|
|
|
|
@ -278,11 +349,11 @@ def van_hove_self(
|
|
|
|
|
if axis == "all":
|
|
|
|
|
delta_r = (vectors**2).sum(axis=1) ** 0.5
|
|
|
|
|
elif axis == "xy" or axis == "yx":
|
|
|
|
|
delta_r = (vectors[:, [0, 1]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
delta_r = (vectors[:, [0, 1]] ** 2).sum(axis=1) ** 0.5
|
|
|
|
|
elif axis == "xz" or axis == "zx":
|
|
|
|
|
delta_r = (vectors[:, [0, 2]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
delta_r = (vectors[:, [0, 2]] ** 2).sum(axis=1) ** 0.5
|
|
|
|
|
elif axis == "yz" or axis == "zy":
|
|
|
|
|
delta_r = (vectors[:, [1, 2]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
delta_r = (vectors[:, [1, 2]] ** 2).sum(axis=1) ** 0.5
|
|
|
|
|
elif axis == "x":
|
|
|
|
|
delta_r = np.abs(vectors[:, 0])
|
|
|
|
|
elif axis == "y":
|
|
|
|
@ -445,13 +516,13 @@ def non_gaussian_parameter(
|
|
|
|
|
r = (vectors**2).sum(axis=1)
|
|
|
|
|
dimensions = 3
|
|
|
|
|
elif axis == "xy" or axis == "yx":
|
|
|
|
|
r = (vectors[:, [0, 1]]**2).sum(axis=1)
|
|
|
|
|
r = (vectors[:, [0, 1]] ** 2).sum(axis=1)
|
|
|
|
|
dimensions = 2
|
|
|
|
|
elif axis == "xz" or axis == "zx":
|
|
|
|
|
r = (vectors[:, [0, 2]]**2).sum(axis=1)
|
|
|
|
|
r = (vectors[:, [0, 2]] ** 2).sum(axis=1)
|
|
|
|
|
dimensions = 2
|
|
|
|
|
elif axis == "yz" or axis == "zy":
|
|
|
|
|
r = (vectors[:, [1, 2]]**2).sum(axis=1)
|
|
|
|
|
r = (vectors[:, [1, 2]] ** 2).sum(axis=1)
|
|
|
|
|
dimensions = 2
|
|
|
|
|
elif axis == "x":
|
|
|
|
|
r = vectors[:, 0] ** 2
|
|
|
|
|