Compare commits
5 Commits
main
...
mdeval_dev
Author | SHA1 | Date | |
---|---|---|---|
adae920527 | |||
11793d7960 | |||
55b06fa61d | |||
3aa91d7482 | |||
7d8c5d849d |
@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "mdevaluate"
|
||||
version = "24.02"
|
||||
version = "24.06"
|
||||
dependencies = [
|
||||
"mdanalysis",
|
||||
"pandas",
|
||||
|
@ -13,9 +13,95 @@ from .pbc import pbc_diff, pbc_points
|
||||
from .coordinates import Coordinates, CoordinateFrame, displacements_without_drift
|
||||
|
||||
|
||||
def log_indices(first: int, last: int, num: int = 100) -> np.ndarray:
|
||||
ls = np.logspace(0, np.log10(last - first + 1), num=num)
|
||||
return np.unique(np.int_(ls) - 1 + first)
|
||||
def _is_multi_selector(selection):
|
||||
if len(selection) == 0:
|
||||
return False
|
||||
elif (
|
||||
isinstance(selection[0], int)
|
||||
or isinstance(selection[0], bool)
|
||||
or isinstance(selection[0], np.integer)
|
||||
or isinstance(selection[0], np.bool_)
|
||||
):
|
||||
return False
|
||||
else:
|
||||
for indices in selection:
|
||||
if len(indices) == 0:
|
||||
continue
|
||||
elif (
|
||||
isinstance(indices[0], int)
|
||||
or isinstance(indices[0], bool)
|
||||
or isinstance(indices[0], np.integer)
|
||||
or isinstance(indices[0], np.bool_)
|
||||
):
|
||||
return True
|
||||
else:
|
||||
raise ValueError(
|
||||
"selector has more than two dimensions or does not "
|
||||
"contain int or bool types"
|
||||
)
|
||||
|
||||
|
||||
def _calc_correlation(
|
||||
frames: Coordinates,
|
||||
start_frame: CoordinateFrame,
|
||||
function: Callable,
|
||||
selection: np.ndarray,
|
||||
shifted_idx: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
if len(selection) == 0:
|
||||
correlation = np.zeros(len(shifted_idx))
|
||||
else:
|
||||
start = start_frame[selection]
|
||||
correlation = np.array(
|
||||
[
|
||||
function(start, frames[frame_index][selection])
|
||||
for frame_index in shifted_idx
|
||||
]
|
||||
)
|
||||
return correlation
|
||||
|
||||
|
||||
def _calc_correlation_multi(
|
||||
frames: Coordinates,
|
||||
start_frame: CoordinateFrame,
|
||||
function: Callable,
|
||||
selection: np.ndarray,
|
||||
shifted_idx: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
correlations = np.zeros((len(selection), len(shifted_idx)))
|
||||
for i, frame_index in enumerate(shifted_idx):
|
||||
frame = frames[frame_index]
|
||||
for j, current_selection in enumerate(selection):
|
||||
if len(selection) == 0:
|
||||
correlations[j, i] = 0
|
||||
else:
|
||||
correlations[j, i] = function(
|
||||
start_frame[current_selection], frame[current_selection]
|
||||
)
|
||||
return correlations
|
||||
|
||||
|
||||
def _average_correlation(result):
|
||||
averaged_result = []
|
||||
for n in range(result.shape[1]):
|
||||
clean_result = []
|
||||
for entry in result[:, n]:
|
||||
if np.all(entry == 0):
|
||||
continue
|
||||
else:
|
||||
clean_result.append(entry)
|
||||
averaged_result.append(np.average(np.array(clean_result), axis=0))
|
||||
return np.array(averaged_result)
|
||||
|
||||
|
||||
def _average_correlation_multi(result):
|
||||
clean_result = []
|
||||
for entry in result:
|
||||
if np.all(entry == 0):
|
||||
continue
|
||||
else:
|
||||
clean_result.append(entry)
|
||||
return np.average(np.array(clean_result), axis=0)
|
||||
|
||||
|
||||
@autosave_data(2)
|
||||
@ -28,113 +114,82 @@ def shifted_correlation(
|
||||
window: float = 0.5,
|
||||
average: bool = True,
|
||||
points: int = 100,
|
||||
) -> (np.ndarray, np.ndarray):
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""Compute a time-dependent correlation function for a given trajectory.
|
||||
|
||||
To improve statistics, multiple (possibly overlapping) windows will be
|
||||
layed over the whole trajectory and the correlation is computed for them separately.
|
||||
The start frames of the windows are spaced linearly over the valid region of
|
||||
the trajectory (skipping frames in the beginning given by skip parameter).
|
||||
|
||||
The points within each window are spaced logarithmically.
|
||||
|
||||
Only a certain subset of the given atoms may be selected for each window
|
||||
individually using a selector function.
|
||||
|
||||
Note that this function is specifically optimized for multi selectors, which select
|
||||
multiple selection sets per window, for which the correlation is to be computed
|
||||
separately.
|
||||
|
||||
|
||||
Arguments
|
||||
---------
|
||||
function:
|
||||
The (correlation) function to evaluate.
|
||||
Should be of the form (CoordinateFrame, CoordinateFrame) -> float
|
||||
|
||||
frames:
|
||||
Trajectory to evaluate on
|
||||
|
||||
selector: (optional)
|
||||
Selection function so select only certain selection sets for each start frame.
|
||||
Should be of the form
|
||||
(CoordinateFrame) -> list[A]
|
||||
where A is something you can index an ndarray with.
|
||||
For example a list of indices or a bool array.
|
||||
Must return the same number of selection sets for every frame.
|
||||
|
||||
segments:
|
||||
Number of start frames
|
||||
|
||||
skip:
|
||||
Percentage of trajectory to skip from the start
|
||||
|
||||
window:
|
||||
Length of each segment given as percentage of trajectory
|
||||
|
||||
average:
|
||||
Whether to return averaged results.
|
||||
See below for details on the returned ndarray.
|
||||
|
||||
points:
|
||||
Number of points per segment
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
times: ndarray
|
||||
1d array of time differences to start frame
|
||||
result: ndarray
|
||||
2d ndarray of averaged (or non-averaged) correlations.
|
||||
|
||||
When average==True (default) the returned array will be of the shape (S, P)
|
||||
where S is the number of selection sets and P the number of points per window.
|
||||
For selection sets that where empty for all start frames all data points will be
|
||||
zero.
|
||||
|
||||
When average==False the returned array will be of shape (W, S) with
|
||||
dtype=object. The elements are either ndarrays of shape (P,) containing the
|
||||
correlation data for the specific window and selection set or None if the
|
||||
corresponding selection set was empty.
|
||||
W is the number of segments (windows).
|
||||
S and P are the same as for average==True.
|
||||
|
||||
"""
|
||||
Calculate the time series for a correlation function.
|
||||
|
||||
The times at which the correlation is calculated are determined by
|
||||
a logarithmic distribution.
|
||||
|
||||
Args:
|
||||
function: The function that should be correlated
|
||||
frames: The coordinates of the simulation data
|
||||
selector (opt.):
|
||||
A function that returns the indices depending on
|
||||
the staring frame for which particles the
|
||||
correlation should be calculated.
|
||||
segments (int, opt.):
|
||||
The number of segments the time window will be
|
||||
shifted
|
||||
skip (float, opt.):
|
||||
The fraction of the trajectory that will be skipped
|
||||
at the beginning, if this is None the start index
|
||||
of the frames slice will be used, which defaults
|
||||
to 0.1.
|
||||
window (float, opt.):
|
||||
The fraction of the simulation the time series will
|
||||
cover
|
||||
average (bool, opt.):
|
||||
If True, returns averaged correlation function
|
||||
points (int, opt.):
|
||||
The number of timeshifts for which the correlation
|
||||
should be calculated
|
||||
Returns:
|
||||
tuple:
|
||||
A list of length N that contains the timeshiftes of the frames at which
|
||||
the time series was calculated and a numpy array of shape (segments, N)
|
||||
that holds the (non-avaraged) correlation data
|
||||
|
||||
Example:
|
||||
Calculating the mean square displacement of a coordinate object
|
||||
named ``coords``:
|
||||
|
||||
>>> time, data = shifted_correlation(msd, coords)
|
||||
"""
|
||||
|
||||
def get_correlation(
|
||||
frames: CoordinateFrame,
|
||||
start_frame: CoordinateFrame,
|
||||
index: np.ndarray,
|
||||
shifted_idx: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
if len(index) == 0:
|
||||
correlation = np.zeros(len(shifted_idx))
|
||||
else:
|
||||
start = frames[start_frame][index]
|
||||
correlation = np.array(
|
||||
[function(start, frames[frame][index]) for frame in shifted_idx]
|
||||
)
|
||||
return correlation
|
||||
|
||||
def apply_selector(
|
||||
start_frame: CoordinateFrame,
|
||||
frames: CoordinateFrame,
|
||||
idx: np.ndarray,
|
||||
selector: Optional[Callable] = None,
|
||||
):
|
||||
shifted_idx = idx + start_frame
|
||||
|
||||
if selector is None:
|
||||
index = np.arange(len(frames[start_frame]))
|
||||
return get_correlation(frames, start_frame, index, shifted_idx)
|
||||
else:
|
||||
index = selector(frames[start_frame])
|
||||
if len(index) == 0:
|
||||
return np.zeros(len(shifted_idx))
|
||||
|
||||
elif (
|
||||
isinstance(index[0], int)
|
||||
or isinstance(index[0], bool)
|
||||
or isinstance(index[0], np.integer)
|
||||
or isinstance(index[0], np.bool_)
|
||||
):
|
||||
return get_correlation(frames, start_frame, index, shifted_idx)
|
||||
else:
|
||||
correlations = []
|
||||
for ind in index:
|
||||
if len(ind) == 0:
|
||||
correlations.append(np.zeros(len(shifted_idx)))
|
||||
|
||||
elif (
|
||||
isinstance(ind[0], int)
|
||||
or isinstance(ind[0], bool)
|
||||
or isinstance(ind[0], np.integer)
|
||||
or isinstance(ind[0], np.bool_)
|
||||
):
|
||||
correlations.append(
|
||||
get_correlation(frames, start_frame, ind, shifted_idx)
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"selector has more than two dimensions or does not "
|
||||
"contain int or bool types"
|
||||
)
|
||||
return correlations
|
||||
|
||||
if 1 - skip < window:
|
||||
window = 1 - skip
|
||||
|
||||
start_frames = np.unique(
|
||||
start_frame_indices = np.unique(
|
||||
np.linspace(
|
||||
len(frames) * skip,
|
||||
len(frames) * (1 - window),
|
||||
@ -144,28 +199,44 @@ def shifted_correlation(
|
||||
)
|
||||
)
|
||||
|
||||
num_frames = int(len(frames) * window)
|
||||
ls = np.logspace(0, np.log10(num_frames + 1), num=points)
|
||||
idx = np.unique(np.int_(ls) - 1)
|
||||
t = np.array([frames[i].time for i in idx]) - frames[0].time
|
||||
|
||||
result = np.array(
|
||||
[
|
||||
apply_selector(start_frame, frames=frames, idx=idx, selector=selector)
|
||||
for start_frame in start_frames
|
||||
]
|
||||
num_frames_per_window = int(len(frames) * window)
|
||||
logspaced_indices = np.logspace(0, np.log10(num_frames_per_window + 1), num=points)
|
||||
logspaced_indices = np.unique(np.int_(logspaced_indices) - 1)
|
||||
logspaced_time = (
|
||||
np.array([frames[i].time for i in logspaced_indices]) - frames[0].time
|
||||
)
|
||||
|
||||
if selector is None:
|
||||
multi_selector = False
|
||||
else:
|
||||
selection = selector(frames[0])
|
||||
multi_selector = _is_multi_selector(selection)
|
||||
|
||||
result = []
|
||||
for start_frame_index in start_frame_indices:
|
||||
shifted_idx = logspaced_indices + start_frame_index
|
||||
start_frame = frames[start_frame_index]
|
||||
if selector is None:
|
||||
selection = np.arange(len(start_frame))
|
||||
else:
|
||||
selection = selector(start_frame)
|
||||
if multi_selector:
|
||||
result_segment = _calc_correlation_multi(
|
||||
frames, start_frame, function, selection, shifted_idx
|
||||
)
|
||||
else:
|
||||
result_segment = _calc_correlation(
|
||||
frames, start_frame, function, selection, shifted_idx
|
||||
)
|
||||
result.append(result_segment)
|
||||
result = np.array(result)
|
||||
|
||||
if average:
|
||||
clean_result = []
|
||||
for entry in result:
|
||||
if np.all(entry == 0):
|
||||
continue
|
||||
else:
|
||||
clean_result.append(entry)
|
||||
result = np.array(clean_result)
|
||||
result = np.average(result, axis=0)
|
||||
return t, result
|
||||
if multi_selector:
|
||||
result = _average_correlation_multi(result)
|
||||
else:
|
||||
result = _average_correlation(result)
|
||||
return logspaced_time, result
|
||||
|
||||
|
||||
def msd(
|
||||
@ -184,11 +255,11 @@ def msd(
|
||||
if axis == "all":
|
||||
return (displacements**2).sum(axis=1).mean()
|
||||
elif axis == "xy" or axis == "yx":
|
||||
return (displacements[:, [0, 1]]**2).sum(axis=1).mean()
|
||||
return (displacements[:, [0, 1]] ** 2).sum(axis=1).mean()
|
||||
elif axis == "xz" or axis == "zx":
|
||||
return (displacements[:, [0, 2]]**2).sum(axis=1).mean()
|
||||
return (displacements[:, [0, 2]] ** 2).sum(axis=1).mean()
|
||||
elif axis == "yz" or axis == "zy":
|
||||
return (displacements[:, [1, 2]]**2).sum(axis=1).mean()
|
||||
return (displacements[:, [1, 2]] ** 2).sum(axis=1).mean()
|
||||
elif axis == "x":
|
||||
return (displacements[:, 0] ** 2).mean()
|
||||
elif axis == "y":
|
||||
@ -218,13 +289,13 @@ def isf(
|
||||
distance = (displacements**2).sum(axis=1) ** 0.5
|
||||
return np.sinc(distance * q / np.pi).mean()
|
||||
elif axis == "xy" or axis == "yx":
|
||||
distance = (displacements[:, [0, 1]]**2).sum(axis=1) ** 0.5
|
||||
distance = (displacements[:, [0, 1]] ** 2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q)).mean()
|
||||
elif axis == "xz" or axis == "zx":
|
||||
distance = (displacements[:, [0, 2]]**2).sum(axis=1) ** 0.5
|
||||
distance = (displacements[:, [0, 2]] ** 2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q)).mean()
|
||||
elif axis == "yz" or axis == "zy":
|
||||
distance = (displacements[:, [1, 2]]**2).sum(axis=1) ** 0.5
|
||||
distance = (displacements[:, [1, 2]] ** 2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q)).mean()
|
||||
elif axis == "x":
|
||||
distance = np.abs(displacements[:, 0])
|
||||
@ -278,11 +349,11 @@ def van_hove_self(
|
||||
if axis == "all":
|
||||
delta_r = (vectors**2).sum(axis=1) ** 0.5
|
||||
elif axis == "xy" or axis == "yx":
|
||||
delta_r = (vectors[:, [0, 1]]**2).sum(axis=1) ** 0.5
|
||||
delta_r = (vectors[:, [0, 1]] ** 2).sum(axis=1) ** 0.5
|
||||
elif axis == "xz" or axis == "zx":
|
||||
delta_r = (vectors[:, [0, 2]]**2).sum(axis=1) ** 0.5
|
||||
delta_r = (vectors[:, [0, 2]] ** 2).sum(axis=1) ** 0.5
|
||||
elif axis == "yz" or axis == "zy":
|
||||
delta_r = (vectors[:, [1, 2]]**2).sum(axis=1) ** 0.5
|
||||
delta_r = (vectors[:, [1, 2]] ** 2).sum(axis=1) ** 0.5
|
||||
elif axis == "x":
|
||||
delta_r = np.abs(vectors[:, 0])
|
||||
elif axis == "y":
|
||||
@ -445,13 +516,13 @@ def non_gaussian_parameter(
|
||||
r = (vectors**2).sum(axis=1)
|
||||
dimensions = 3
|
||||
elif axis == "xy" or axis == "yx":
|
||||
r = (vectors[:, [0, 1]]**2).sum(axis=1)
|
||||
r = (vectors[:, [0, 1]] ** 2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "xz" or axis == "zx":
|
||||
r = (vectors[:, [0, 2]]**2).sum(axis=1)
|
||||
r = (vectors[:, [0, 2]] ** 2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "yz" or axis == "zy":
|
||||
r = (vectors[:, [1, 2]]**2).sum(axis=1)
|
||||
r = (vectors[:, [1, 2]] ** 2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "x":
|
||||
r = vectors[:, 0] ** 2
|
||||
|
@ -177,7 +177,7 @@ def coherent_sum(
|
||||
func: Callable[[ArrayLike, ArrayLike], float],
|
||||
coord_a: ArrayLike,
|
||||
coord_b: ArrayLike,
|
||||
) -> float:
|
||||
) -> NDArray:
|
||||
"""
|
||||
Perform a coherent sum over two arrays :math:`A, B`.
|
||||
|
||||
|
57
test/test_correlation.py
Normal file
57
test/test_correlation.py
Normal file
@ -0,0 +1,57 @@
|
||||
import os
|
||||
import pytest
|
||||
|
||||
import mdevaluate
|
||||
from mdevaluate import correlation
|
||||
import numpy as np
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def trajectory(request):
|
||||
return mdevaluate.open(os.path.join(os.path.dirname(__file__), "data/water"))
|
||||
|
||||
|
||||
def test_shifted_correlation(trajectory):
|
||||
test_array = np.array([100, 82, 65, 49, 39, 29, 20, 13, 7])
|
||||
OW = trajectory.subset(atom_name="OW")
|
||||
t, result = correlation.shifted_correlation(
|
||||
correlation.isf, OW, segments=10, skip=0.1, points=10
|
||||
)
|
||||
assert (np.array(result * 100, dtype=int) == test_array).all()
|
||||
|
||||
|
||||
def test_shifted_correlation_no_average(trajectory):
|
||||
t, result = correlation.shifted_correlation(
|
||||
correlation.isf, trajectory, segments=10, skip=0.1, points=5, average=False
|
||||
)
|
||||
assert result.shape == (10, 5)
|
||||
|
||||
|
||||
def test_shifted_correlation_selector(trajectory):
|
||||
test_array = np.array([100, 82, 64, 48, 37, 28, 19, 11, 5])
|
||||
|
||||
def selector(frame):
|
||||
index = np.argwhere((frame[:, 0] >= 0) * (frame[:, 0] < 1))
|
||||
return index.flatten()
|
||||
|
||||
OW = trajectory.subset(atom_name="OW")
|
||||
t, result = correlation.shifted_correlation(
|
||||
correlation.isf, OW, segments=10, skip=0.1, points=10, selector=selector
|
||||
)
|
||||
assert (np.array(result * 100, dtype=int) == test_array).all()
|
||||
|
||||
|
||||
def test_shifted_correlation_multi_selector(trajectory):
|
||||
def selector(frame):
|
||||
indices = []
|
||||
for i in range(3):
|
||||
x = frame[:, 0].flatten()
|
||||
index = np.argwhere((x >= i) * (x < i + 1))
|
||||
indices.append(index.flatten())
|
||||
return indices
|
||||
|
||||
OW = trajectory.subset(atom_name="OW")
|
||||
t, result = correlation.shifted_correlation(
|
||||
correlation.isf, OW, segments=10, skip=0.1, points=10, selector=selector
|
||||
)
|
||||
assert result.shape == (3, 9)
|
Loading…
x
Reference in New Issue
Block a user