Compare commits
10 Commits
mdeval_dev
...
feature/co
Author | SHA1 | Date | |
---|---|---|---|
|
0ffce2f17a | ||
|
0eff84910b | ||
|
dae2d6ed95 | ||
|
ec4094cd92 | ||
|
00043637e9 | ||
|
7585e598dc | ||
|
6d8b86c1ef | ||
|
a2a0ae8d7b | ||
90bd90a608 | |||
|
67d3e70a66 |
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "mdevaluate"
|
||||
version = "24.06"
|
||||
version = "24.02"
|
||||
dependencies = [
|
||||
"mdanalysis",
|
||||
"pandas",
|
||||
|
@@ -16,7 +16,7 @@ from . import reader
|
||||
from . import system
|
||||
from . import utils
|
||||
from . import extra
|
||||
from .logging import logger
|
||||
from .logging_util import logger
|
||||
|
||||
|
||||
def open(
|
||||
|
@@ -5,7 +5,7 @@ from typing import Optional, Callable, Iterable
|
||||
|
||||
import numpy as np
|
||||
from .checksum import checksum
|
||||
from .logging import logger
|
||||
from .logging_util import logger
|
||||
|
||||
autosave_directory: Optional[str] = None
|
||||
load_autosave_data = False
|
||||
|
@@ -1,9 +1,14 @@
|
||||
import functools
|
||||
import hashlib
|
||||
from .logging import logger
|
||||
from .logging_util import logger
|
||||
from types import ModuleType, FunctionType
|
||||
import inspect
|
||||
from typing import Iterable
|
||||
import ast
|
||||
import io
|
||||
import tokenize
|
||||
import re
|
||||
import textwrap
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -28,19 +33,46 @@ def version(version_nr: int, calls: Iterable = ()):
|
||||
return decorator
|
||||
|
||||
|
||||
def strip_comments(s: str):
|
||||
"""Strips comment lines and docstring from Python source string."""
|
||||
o = ""
|
||||
in_docstring = False
|
||||
for l in s.split("\n"):
|
||||
if l.strip().startswith(("#", '"', "'")) or in_docstring:
|
||||
in_docstring = l.strip().startswith(('"""', "'''")) + in_docstring == 1
|
||||
def strip_comments(source: str) -> str:
|
||||
"""Removes docstrings, comments, and irrelevant whitespace from Python source code."""
|
||||
|
||||
# Step 1: Remove docstrings using AST
|
||||
def remove_docstrings(node):
|
||||
if isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef, ast.ClassDef, ast.Module)):
|
||||
if (doc := ast.get_docstring(node, clean=False)):
|
||||
first_stmt = node.body[0]
|
||||
if isinstance(first_stmt, ast.Expr) and isinstance(first_stmt.value, ast.Constant):
|
||||
node.body.pop(0) # Remove the docstring entirely
|
||||
for child in ast.iter_child_nodes(node):
|
||||
remove_docstrings(child)
|
||||
|
||||
tree = ast.parse(textwrap.dedent(source))
|
||||
remove_docstrings(tree)
|
||||
code_without_docstrings = ast.unparse(tree)
|
||||
|
||||
# Step 2: Remove comments using tokenize
|
||||
tokens = tokenize.generate_tokens(io.StringIO(code_without_docstrings).readline)
|
||||
result = []
|
||||
last_lineno = -1
|
||||
last_col = 0
|
||||
|
||||
for toknum, tokval, (srow, scol), (erow, ecol), line in tokens:
|
||||
if toknum == tokenize.COMMENT:
|
||||
continue
|
||||
o += l + "\n"
|
||||
return o
|
||||
if srow > last_lineno:
|
||||
last_col = 0
|
||||
if scol > last_col:
|
||||
result.append(" " * (scol - last_col))
|
||||
result.append(tokval)
|
||||
last_lineno, last_col = erow, ecol
|
||||
|
||||
code_no_comments = ''.join(result)
|
||||
|
||||
# Step 3: Remove empty lines (whitespace-only or truly blank)
|
||||
return "\n".join([line for line in code_no_comments.splitlines() if line.strip() != ""])
|
||||
|
||||
|
||||
def checksum(*args, csum=None):
|
||||
def checksum(*args, csum=None, _seen=None):
|
||||
"""
|
||||
Calculate a checksum of any object, by sha1 hash.
|
||||
|
||||
@@ -60,7 +92,15 @@ def checksum(*args, csum=None):
|
||||
csum = hashlib.sha1()
|
||||
csum.update(str(SALT).encode())
|
||||
|
||||
if _seen is None:
|
||||
_seen = set()
|
||||
|
||||
for arg in args:
|
||||
obj_id = id(arg)
|
||||
if obj_id in _seen:
|
||||
continue
|
||||
_seen.add(obj_id)
|
||||
|
||||
if hasattr(arg, "__checksum__"):
|
||||
logger.debug("Checksum via __checksum__: %s", str(arg))
|
||||
csum.update(str(arg.__checksum__()).encode())
|
||||
@@ -73,17 +113,19 @@ def checksum(*args, csum=None):
|
||||
elif isinstance(arg, FunctionType):
|
||||
csum.update(strip_comments(inspect.getsource(arg)).encode())
|
||||
c = inspect.getclosurevars(arg)
|
||||
for v in {**c.nonlocals, **c.globals}.values():
|
||||
merged = {**c.nonlocals, **c.globals}
|
||||
for key in sorted(merged): # deterministic ordering
|
||||
v = merged[key]
|
||||
if v is not arg:
|
||||
checksum(v, csum=csum)
|
||||
checksum(v, csum=csum, _seen=_seen)
|
||||
elif isinstance(arg, functools.partial):
|
||||
logger.debug("Checksum via partial for %s", str(arg))
|
||||
checksum(arg.func, csum=csum)
|
||||
checksum(arg.func, csum=csum, _seen=_seen)
|
||||
for x in arg.args:
|
||||
checksum(x, csum=csum)
|
||||
checksum(x, csum=csum, _seen=_seen)
|
||||
for k in sorted(arg.keywords.keys()):
|
||||
csum.update(k.encode())
|
||||
checksum(arg.keywords[k], csum=csum)
|
||||
checksum(arg.keywords[k], csum=csum, _seen=_seen)
|
||||
elif isinstance(arg, np.ndarray):
|
||||
csum.update(arg.tobytes())
|
||||
else:
|
||||
|
@@ -1,6 +1,6 @@
|
||||
from functools import partial, wraps
|
||||
from copy import copy
|
||||
from .logging import logger
|
||||
from .logging_util import logger
|
||||
from typing import Optional, Callable, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
@@ -13,98 +13,12 @@ from .pbc import pbc_diff, pbc_points
|
||||
from .coordinates import Coordinates, CoordinateFrame, displacements_without_drift
|
||||
|
||||
|
||||
def _is_multi_selector(selection):
|
||||
if len(selection) == 0:
|
||||
return False
|
||||
elif (
|
||||
isinstance(selection[0], int)
|
||||
or isinstance(selection[0], bool)
|
||||
or isinstance(selection[0], np.integer)
|
||||
or isinstance(selection[0], np.bool_)
|
||||
):
|
||||
return False
|
||||
else:
|
||||
for indices in selection:
|
||||
if len(indices) == 0:
|
||||
continue
|
||||
elif (
|
||||
isinstance(indices[0], int)
|
||||
or isinstance(indices[0], bool)
|
||||
or isinstance(indices[0], np.integer)
|
||||
or isinstance(indices[0], np.bool_)
|
||||
):
|
||||
return True
|
||||
else:
|
||||
raise ValueError(
|
||||
"selector has more than two dimensions or does not "
|
||||
"contain int or bool types"
|
||||
)
|
||||
def log_indices(first: int, last: int, num: int = 100) -> np.ndarray:
|
||||
ls = np.logspace(0, np.log10(last - first + 1), num=num)
|
||||
return np.unique(np.int_(ls) - 1 + first)
|
||||
|
||||
|
||||
def _calc_correlation(
|
||||
frames: Coordinates,
|
||||
start_frame: CoordinateFrame,
|
||||
function: Callable,
|
||||
selection: np.ndarray,
|
||||
shifted_idx: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
if len(selection) == 0:
|
||||
correlation = np.zeros(len(shifted_idx))
|
||||
else:
|
||||
start = start_frame[selection]
|
||||
correlation = np.array(
|
||||
[
|
||||
function(start, frames[frame_index][selection])
|
||||
for frame_index in shifted_idx
|
||||
]
|
||||
)
|
||||
return correlation
|
||||
|
||||
|
||||
def _calc_correlation_multi(
|
||||
frames: Coordinates,
|
||||
start_frame: CoordinateFrame,
|
||||
function: Callable,
|
||||
selection: np.ndarray,
|
||||
shifted_idx: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
correlations = np.zeros((len(selection), len(shifted_idx)))
|
||||
for i, frame_index in enumerate(shifted_idx):
|
||||
frame = frames[frame_index]
|
||||
for j, current_selection in enumerate(selection):
|
||||
if len(selection) == 0:
|
||||
correlations[j, i] = 0
|
||||
else:
|
||||
correlations[j, i] = function(
|
||||
start_frame[current_selection], frame[current_selection]
|
||||
)
|
||||
return correlations
|
||||
|
||||
|
||||
def _average_correlation(result):
|
||||
averaged_result = []
|
||||
for n in range(result.shape[1]):
|
||||
clean_result = []
|
||||
for entry in result[:, n]:
|
||||
if np.all(entry == 0):
|
||||
continue
|
||||
else:
|
||||
clean_result.append(entry)
|
||||
averaged_result.append(np.average(np.array(clean_result), axis=0))
|
||||
return np.array(averaged_result)
|
||||
|
||||
|
||||
def _average_correlation_multi(result):
|
||||
clean_result = []
|
||||
for entry in result:
|
||||
if np.all(entry == 0):
|
||||
continue
|
||||
else:
|
||||
clean_result.append(entry)
|
||||
return np.average(np.array(clean_result), axis=0)
|
||||
|
||||
|
||||
@autosave_data(2)
|
||||
@autosave_data(nargs=2, kwargs_keys=('selector', 'segments', 'skip', 'window', 'average', 'points',), version=1.0)
|
||||
def shifted_correlation(
|
||||
function: Callable,
|
||||
frames: Coordinates,
|
||||
@@ -114,82 +28,113 @@ def shifted_correlation(
|
||||
window: float = 0.5,
|
||||
average: bool = True,
|
||||
points: int = 100,
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""Compute a time-dependent correlation function for a given trajectory.
|
||||
|
||||
To improve statistics, multiple (possibly overlapping) windows will be
|
||||
layed over the whole trajectory and the correlation is computed for them separately.
|
||||
The start frames of the windows are spaced linearly over the valid region of
|
||||
the trajectory (skipping frames in the beginning given by skip parameter).
|
||||
|
||||
The points within each window are spaced logarithmically.
|
||||
|
||||
Only a certain subset of the given atoms may be selected for each window
|
||||
individually using a selector function.
|
||||
|
||||
Note that this function is specifically optimized for multi selectors, which select
|
||||
multiple selection sets per window, for which the correlation is to be computed
|
||||
separately.
|
||||
|
||||
|
||||
Arguments
|
||||
---------
|
||||
function:
|
||||
The (correlation) function to evaluate.
|
||||
Should be of the form (CoordinateFrame, CoordinateFrame) -> float
|
||||
|
||||
frames:
|
||||
Trajectory to evaluate on
|
||||
|
||||
selector: (optional)
|
||||
Selection function so select only certain selection sets for each start frame.
|
||||
Should be of the form
|
||||
(CoordinateFrame) -> list[A]
|
||||
where A is something you can index an ndarray with.
|
||||
For example a list of indices or a bool array.
|
||||
Must return the same number of selection sets for every frame.
|
||||
|
||||
segments:
|
||||
Number of start frames
|
||||
|
||||
skip:
|
||||
Percentage of trajectory to skip from the start
|
||||
|
||||
window:
|
||||
Length of each segment given as percentage of trajectory
|
||||
|
||||
average:
|
||||
Whether to return averaged results.
|
||||
See below for details on the returned ndarray.
|
||||
|
||||
points:
|
||||
Number of points per segment
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
times: ndarray
|
||||
1d array of time differences to start frame
|
||||
result: ndarray
|
||||
2d ndarray of averaged (or non-averaged) correlations.
|
||||
|
||||
When average==True (default) the returned array will be of the shape (S, P)
|
||||
where S is the number of selection sets and P the number of points per window.
|
||||
For selection sets that where empty for all start frames all data points will be
|
||||
zero.
|
||||
|
||||
When average==False the returned array will be of shape (W, S) with
|
||||
dtype=object. The elements are either ndarrays of shape (P,) containing the
|
||||
correlation data for the specific window and selection set or None if the
|
||||
corresponding selection set was empty.
|
||||
W is the number of segments (windows).
|
||||
S and P are the same as for average==True.
|
||||
|
||||
) -> (np.ndarray, np.ndarray):
|
||||
"""
|
||||
Calculate the time series for a correlation function.
|
||||
|
||||
The times at which the correlation is calculated are determined by
|
||||
a logarithmic distribution.
|
||||
|
||||
Args:
|
||||
function: The function that should be correlated
|
||||
frames: The coordinates of the simulation data
|
||||
selector (opt.):
|
||||
A function that returns the indices depending on
|
||||
the staring frame for which particles the
|
||||
correlation should be calculated.
|
||||
segments (int, opt.):
|
||||
The number of segments the time window will be
|
||||
shifted
|
||||
skip (float, opt.):
|
||||
The fraction of the trajectory that will be skipped
|
||||
at the beginning, if this is None the start index
|
||||
of the frames slice will be used, which defaults
|
||||
to 0.1.
|
||||
window (float, opt.):
|
||||
The fraction of the simulation the time series will
|
||||
cover
|
||||
average (bool, opt.):
|
||||
If True, returns averaged correlation function
|
||||
points (int, opt.):
|
||||
The number of timeshifts for which the correlation
|
||||
should be calculated
|
||||
Returns:
|
||||
tuple:
|
||||
A list of length N that contains the timeshiftes of the frames at which
|
||||
the time series was calculated and a numpy array of shape (segments, N)
|
||||
that holds the (non-avaraged) correlation data
|
||||
|
||||
Example:
|
||||
Calculating the mean square displacement of a coordinate object
|
||||
named ``coords``:
|
||||
|
||||
>>> time, data = shifted_correlation(msd, coords)
|
||||
"""
|
||||
|
||||
def get_correlation(
|
||||
frames: CoordinateFrame,
|
||||
start_frame: CoordinateFrame,
|
||||
index: np.ndarray,
|
||||
shifted_idx: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
if len(index) == 0:
|
||||
correlation = np.zeros(len(shifted_idx))
|
||||
else:
|
||||
start = frames[start_frame][index]
|
||||
correlation = np.array(
|
||||
[function(start, frames[frame][index]) for frame in shifted_idx]
|
||||
)
|
||||
return correlation
|
||||
|
||||
def apply_selector(
|
||||
start_frame: CoordinateFrame,
|
||||
frames: CoordinateFrame,
|
||||
idx: np.ndarray,
|
||||
selector: Optional[Callable] = None,
|
||||
):
|
||||
shifted_idx = idx + start_frame
|
||||
|
||||
if selector is None:
|
||||
index = np.arange(len(frames[start_frame]))
|
||||
return get_correlation(frames, start_frame, index, shifted_idx)
|
||||
else:
|
||||
index = selector(frames[start_frame])
|
||||
if len(index) == 0:
|
||||
return np.zeros(len(shifted_idx))
|
||||
|
||||
elif (
|
||||
isinstance(index[0], int)
|
||||
or isinstance(index[0], bool)
|
||||
or isinstance(index[0], np.integer)
|
||||
or isinstance(index[0], np.bool_)
|
||||
):
|
||||
return get_correlation(frames, start_frame, index, shifted_idx)
|
||||
else:
|
||||
correlations = []
|
||||
for ind in index:
|
||||
if len(ind) == 0:
|
||||
correlations.append(np.zeros(len(shifted_idx)))
|
||||
|
||||
elif (
|
||||
isinstance(ind[0], int)
|
||||
or isinstance(ind[0], bool)
|
||||
or isinstance(ind[0], np.integer)
|
||||
or isinstance(ind[0], np.bool_)
|
||||
):
|
||||
correlations.append(
|
||||
get_correlation(frames, start_frame, ind, shifted_idx)
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"selector has more than two dimensions or does not "
|
||||
"contain int or bool types"
|
||||
)
|
||||
return correlations
|
||||
|
||||
if 1 - skip < window:
|
||||
window = 1 - skip
|
||||
|
||||
start_frame_indices = np.unique(
|
||||
start_frames = np.unique(
|
||||
np.linspace(
|
||||
len(frames) * skip,
|
||||
len(frames) * (1 - window),
|
||||
@@ -199,44 +144,28 @@ def shifted_correlation(
|
||||
)
|
||||
)
|
||||
|
||||
num_frames_per_window = int(len(frames) * window)
|
||||
logspaced_indices = np.logspace(0, np.log10(num_frames_per_window + 1), num=points)
|
||||
logspaced_indices = np.unique(np.int_(logspaced_indices) - 1)
|
||||
logspaced_time = (
|
||||
np.array([frames[i].time for i in logspaced_indices]) - frames[0].time
|
||||
num_frames = int(len(frames) * window)
|
||||
ls = np.logspace(0, np.log10(num_frames + 1), num=points)
|
||||
idx = np.unique(np.int_(ls) - 1)
|
||||
t = np.array([frames[i].time for i in idx]) - frames[0].time
|
||||
|
||||
result = np.array(
|
||||
[
|
||||
apply_selector(start_frame, frames=frames, idx=idx, selector=selector)
|
||||
for start_frame in start_frames
|
||||
]
|
||||
)
|
||||
|
||||
if selector is None:
|
||||
multi_selector = False
|
||||
else:
|
||||
selection = selector(frames[0])
|
||||
multi_selector = _is_multi_selector(selection)
|
||||
|
||||
result = []
|
||||
for start_frame_index in start_frame_indices:
|
||||
shifted_idx = logspaced_indices + start_frame_index
|
||||
start_frame = frames[start_frame_index]
|
||||
if selector is None:
|
||||
selection = np.arange(len(start_frame))
|
||||
else:
|
||||
selection = selector(start_frame)
|
||||
if multi_selector:
|
||||
result_segment = _calc_correlation_multi(
|
||||
frames, start_frame, function, selection, shifted_idx
|
||||
)
|
||||
else:
|
||||
result_segment = _calc_correlation(
|
||||
frames, start_frame, function, selection, shifted_idx
|
||||
)
|
||||
result.append(result_segment)
|
||||
result = np.array(result)
|
||||
|
||||
if average:
|
||||
if multi_selector:
|
||||
result = _average_correlation_multi(result)
|
||||
else:
|
||||
result = _average_correlation(result)
|
||||
return logspaced_time, result
|
||||
clean_result = []
|
||||
for entry in result:
|
||||
if np.all(entry == 0):
|
||||
continue
|
||||
else:
|
||||
clean_result.append(entry)
|
||||
result = np.array(clean_result)
|
||||
result = np.average(result, axis=0)
|
||||
return t, result
|
||||
|
||||
|
||||
def msd(
|
||||
@@ -255,11 +184,11 @@ def msd(
|
||||
if axis == "all":
|
||||
return (displacements**2).sum(axis=1).mean()
|
||||
elif axis == "xy" or axis == "yx":
|
||||
return (displacements[:, [0, 1]] ** 2).sum(axis=1).mean()
|
||||
return (displacements[:, [0, 1]]**2).sum(axis=1).mean()
|
||||
elif axis == "xz" or axis == "zx":
|
||||
return (displacements[:, [0, 2]] ** 2).sum(axis=1).mean()
|
||||
return (displacements[:, [0, 2]]**2).sum(axis=1).mean()
|
||||
elif axis == "yz" or axis == "zy":
|
||||
return (displacements[:, [1, 2]] ** 2).sum(axis=1).mean()
|
||||
return (displacements[:, [1, 2]]**2).sum(axis=1).mean()
|
||||
elif axis == "x":
|
||||
return (displacements[:, 0] ** 2).mean()
|
||||
elif axis == "y":
|
||||
@@ -270,7 +199,7 @@ def msd(
|
||||
raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!')
|
||||
|
||||
|
||||
def isf(
|
||||
def isf_raw(
|
||||
start_frame: CoordinateFrame,
|
||||
end_frame: CoordinateFrame,
|
||||
q: float = 22.7,
|
||||
@@ -287,29 +216,59 @@ def isf(
|
||||
displacements = displacements_without_drift(start_frame, end_frame, trajectory)
|
||||
if axis == "all":
|
||||
distance = (displacements**2).sum(axis=1) ** 0.5
|
||||
return np.sinc(distance * q / np.pi).mean()
|
||||
return np.sinc(distance * q / np.pi)
|
||||
elif axis == "xy" or axis == "yx":
|
||||
distance = (displacements[:, [0, 1]] ** 2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q)).mean()
|
||||
distance = (displacements[:, [0, 1]]**2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q))
|
||||
elif axis == "xz" or axis == "zx":
|
||||
distance = (displacements[:, [0, 2]] ** 2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q)).mean()
|
||||
distance = (displacements[:, [0, 2]]**2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q))
|
||||
elif axis == "yz" or axis == "zy":
|
||||
distance = (displacements[:, [1, 2]] ** 2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q)).mean()
|
||||
distance = (displacements[:, [1, 2]]**2).sum(axis=1) ** 0.5
|
||||
return np.real(jn(0, distance * q))
|
||||
elif axis == "x":
|
||||
distance = np.abs(displacements[:, 0])
|
||||
return np.mean(np.cos(np.abs(q * distance)))
|
||||
return np.cos(np.abs(q * distance))
|
||||
elif axis == "y":
|
||||
distance = np.abs(displacements[:, 1])
|
||||
return np.mean(np.cos(np.abs(q * distance)))
|
||||
return np.cos(np.abs(q * distance))
|
||||
elif axis == "z":
|
||||
distance = np.abs(displacements[:, 2])
|
||||
return np.mean(np.cos(np.abs(q * distance)))
|
||||
return np.cos(np.abs(q * distance))
|
||||
else:
|
||||
raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!')
|
||||
|
||||
|
||||
def isf(
|
||||
start_frame: CoordinateFrame,
|
||||
end_frame: CoordinateFrame,
|
||||
q: float = 22.7,
|
||||
trajectory: Coordinates = None,
|
||||
axis: str = "all",
|
||||
) -> float:
|
||||
"""
|
||||
Incoherent intermediate scattering function averaged over all particles.
|
||||
See isf_raw for details.
|
||||
"""
|
||||
return isf_raw(start_frame, end_frame, q=q, trajectory=trajectory, axis=axis).mean()
|
||||
|
||||
|
||||
def isf_mean_var(
|
||||
start_frame: CoordinateFrame,
|
||||
end_frame: CoordinateFrame,
|
||||
q: float = 22.7,
|
||||
trajectory: Coordinates = None,
|
||||
axis: str = "all",
|
||||
) -> float:
|
||||
"""
|
||||
Incoherent intermediate scattering function averaged over all particles and the
|
||||
variance.
|
||||
See isf_raw for details.
|
||||
"""
|
||||
values = isf_raw(start_frame, end_frame, q=q, trajectory=trajectory, axis=axis)
|
||||
return values.mean(), values.var()
|
||||
|
||||
|
||||
def rotational_autocorrelation(
|
||||
start_frame: CoordinateFrame, end_frame: CoordinateFrame, order: int = 2
|
||||
) -> float:
|
||||
@@ -349,11 +308,11 @@ def van_hove_self(
|
||||
if axis == "all":
|
||||
delta_r = (vectors**2).sum(axis=1) ** 0.5
|
||||
elif axis == "xy" or axis == "yx":
|
||||
delta_r = (vectors[:, [0, 1]] ** 2).sum(axis=1) ** 0.5
|
||||
delta_r = (vectors[:, [0, 1]]**2).sum(axis=1) ** 0.5
|
||||
elif axis == "xz" or axis == "zx":
|
||||
delta_r = (vectors[:, [0, 2]] ** 2).sum(axis=1) ** 0.5
|
||||
delta_r = (vectors[:, [0, 2]]**2).sum(axis=1) ** 0.5
|
||||
elif axis == "yz" or axis == "zy":
|
||||
delta_r = (vectors[:, [1, 2]] ** 2).sum(axis=1) ** 0.5
|
||||
delta_r = (vectors[:, [1, 2]]**2).sum(axis=1) ** 0.5
|
||||
elif axis == "x":
|
||||
delta_r = np.abs(vectors[:, 0])
|
||||
elif axis == "y":
|
||||
@@ -501,10 +460,11 @@ def non_gaussian_parameter(
|
||||
end_frame: CoordinateFrame,
|
||||
trajectory: Coordinates = None,
|
||||
axis: str = "all",
|
||||
full_output = False,
|
||||
) -> float:
|
||||
"""
|
||||
r"""
|
||||
Calculate the non-Gaussian parameter.
|
||||
..math:
|
||||
.. math:
|
||||
\alpha_2 (t) =
|
||||
\frac{3}{5}\frac{\langle r_i^4(t)\rangle}{\langle r_i^2(t)\rangle^2} - 1
|
||||
"""
|
||||
@@ -513,27 +473,41 @@ def non_gaussian_parameter(
|
||||
else:
|
||||
vectors = displacements_without_drift(start_frame, end_frame, trajectory)
|
||||
if axis == "all":
|
||||
r = (vectors**2).sum(axis=1)
|
||||
r2 = (vectors**2).sum(axis=1)
|
||||
dimensions = 3
|
||||
elif axis == "xy" or axis == "yx":
|
||||
r = (vectors[:, [0, 1]] ** 2).sum(axis=1)
|
||||
r2 = (vectors[:, [0, 1]]**2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "xz" or axis == "zx":
|
||||
r = (vectors[:, [0, 2]] ** 2).sum(axis=1)
|
||||
r2 = (vectors[:, [0, 2]]**2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "yz" or axis == "zy":
|
||||
r = (vectors[:, [1, 2]] ** 2).sum(axis=1)
|
||||
r2 = (vectors[:, [1, 2]]**2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "x":
|
||||
r = vectors[:, 0] ** 2
|
||||
r2 = vectors[:, 0] ** 2
|
||||
dimensions = 1
|
||||
elif axis == "y":
|
||||
r = vectors[:, 1] ** 2
|
||||
r2 = vectors[:, 1] ** 2
|
||||
dimensions = 1
|
||||
elif axis == "z":
|
||||
r = vectors[:, 2] ** 2
|
||||
r2 = vectors[:, 2] ** 2
|
||||
dimensions = 1
|
||||
else:
|
||||
raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!')
|
||||
|
||||
m2 = np.mean(r2)
|
||||
m4 = np.mean(r2**2)
|
||||
if m2 == 0.0:
|
||||
if full_output:
|
||||
return 0.0, 0.0, 0.0
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
alpha_2 = (m4 / ((1 + 2 / dimensions) * m2**2)) - 1
|
||||
if full_output:
|
||||
return alpha_2, m2, m4
|
||||
else:
|
||||
return alpha_2
|
||||
|
||||
|
||||
return (np.mean(r**2) / ((1 + 2 / dimensions) * (np.mean(r) ** 2))) - 1
|
||||
|
@@ -182,10 +182,10 @@ def tetrahedral_order(
|
||||
)
|
||||
|
||||
# Connection vectors
|
||||
neighbors_1 -= atoms
|
||||
neighbors_2 -= atoms
|
||||
neighbors_3 -= atoms
|
||||
neighbors_4 -= atoms
|
||||
neighbors_1 = pbc_diff(neighbors_1, atoms, box=atoms.box)
|
||||
neighbors_2 = pbc_diff(neighbors_2, atoms, box=atoms.box)
|
||||
neighbors_3 = pbc_diff(neighbors_3, atoms, box=atoms.box)
|
||||
neighbors_4 = pbc_diff(neighbors_4, atoms, box=atoms.box)
|
||||
|
||||
# Normed Connection vectors
|
||||
neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1)
|
||||
|
@@ -7,7 +7,7 @@ from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
from itertools import product
|
||||
|
||||
from .logging import logger
|
||||
from .logging_util import logger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from mdevaluate.coordinates import CoordinateFrame
|
||||
|
@@ -19,13 +19,13 @@ import MDAnalysis
|
||||
from scipy import sparse
|
||||
|
||||
from .checksum import checksum
|
||||
from .logging import logger
|
||||
from .logging_util import logger
|
||||
from . import atoms
|
||||
from .coordinates import Coordinates
|
||||
|
||||
CSR_ATTRS = ("data", "indices", "indptr")
|
||||
NOJUMP_MAGIC = 2016
|
||||
Group_RE = re.compile("\[ ([-+\w]+) \]")
|
||||
Group_RE = re.compile(r"\[ ([-+\w]+) \]")
|
||||
|
||||
|
||||
class NojumpError(Exception):
|
||||
|
@@ -14,7 +14,7 @@ from scipy.ndimage import uniform_filter1d
|
||||
from scipy.interpolate import interp1d
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
from .logging import logger
|
||||
from .logging_util import logger
|
||||
from .functions import kww, kww_1e
|
||||
|
||||
|
||||
@@ -177,7 +177,7 @@ def coherent_sum(
|
||||
func: Callable[[ArrayLike, ArrayLike], float],
|
||||
coord_a: ArrayLike,
|
||||
coord_b: ArrayLike,
|
||||
) -> NDArray:
|
||||
) -> float:
|
||||
"""
|
||||
Perform a coherent sum over two arrays :math:`A, B`.
|
||||
|
||||
@@ -357,6 +357,37 @@ def quick1etau(t: ArrayLike, C: ArrayLike, n: int = 7) -> float:
|
||||
return tau_est
|
||||
|
||||
|
||||
def quicknongaussfit(t, C, width=2):
|
||||
"""
|
||||
Estimates the time and height of the peak in the non-Gaussian function.
|
||||
C is C(t) the correlation function
|
||||
"""
|
||||
def ffunc(t,y0,A_main,log_tau_main,sig_main):
|
||||
main_peak = A_main*np.exp(-(t - log_tau_main)**2 / (2 * sig_main**2))
|
||||
return y0 + main_peak
|
||||
|
||||
# first rough estimate, the closest time. This is returned if the interpolation fails!
|
||||
tau_est = t[np.argmax(C)]
|
||||
nG_max = np.amax(C)
|
||||
try:
|
||||
with np.errstate(invalid='ignore'):
|
||||
corr = C[t > 0]
|
||||
time = np.log10(t[t > 0])
|
||||
tau = time[np.argmax(corr)]
|
||||
mask = (time>tau-width/2) & (time<tau+width/2)
|
||||
time = time[mask] ; corr = corr[mask]
|
||||
nG_min = C[t > 0].min()
|
||||
guess = [nG_min, nG_max-nG_min, tau, 0.6]
|
||||
popt = curve_fit(ffunc, time, corr, p0=guess, maxfev=10000)[0]
|
||||
tau_est = 10**popt[-2]
|
||||
nG_max = popt[0] + popt[1]
|
||||
except:
|
||||
pass
|
||||
if np.isnan(tau_est):
|
||||
tau_est = np.inf
|
||||
return tau_est, nG_max
|
||||
|
||||
|
||||
def susceptibility(
|
||||
time: NDArray, correlation: NDArray, **kwargs
|
||||
) -> tuple[NDArray, NDArray]:
|
||||
|
@@ -1,57 +0,0 @@
|
||||
import os
|
||||
import pytest
|
||||
|
||||
import mdevaluate
|
||||
from mdevaluate import correlation
|
||||
import numpy as np
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def trajectory(request):
|
||||
return mdevaluate.open(os.path.join(os.path.dirname(__file__), "data/water"))
|
||||
|
||||
|
||||
def test_shifted_correlation(trajectory):
|
||||
test_array = np.array([100, 82, 65, 49, 39, 29, 20, 13, 7])
|
||||
OW = trajectory.subset(atom_name="OW")
|
||||
t, result = correlation.shifted_correlation(
|
||||
correlation.isf, OW, segments=10, skip=0.1, points=10
|
||||
)
|
||||
assert (np.array(result * 100, dtype=int) == test_array).all()
|
||||
|
||||
|
||||
def test_shifted_correlation_no_average(trajectory):
|
||||
t, result = correlation.shifted_correlation(
|
||||
correlation.isf, trajectory, segments=10, skip=0.1, points=5, average=False
|
||||
)
|
||||
assert result.shape == (10, 5)
|
||||
|
||||
|
||||
def test_shifted_correlation_selector(trajectory):
|
||||
test_array = np.array([100, 82, 64, 48, 37, 28, 19, 11, 5])
|
||||
|
||||
def selector(frame):
|
||||
index = np.argwhere((frame[:, 0] >= 0) * (frame[:, 0] < 1))
|
||||
return index.flatten()
|
||||
|
||||
OW = trajectory.subset(atom_name="OW")
|
||||
t, result = correlation.shifted_correlation(
|
||||
correlation.isf, OW, segments=10, skip=0.1, points=10, selector=selector
|
||||
)
|
||||
assert (np.array(result * 100, dtype=int) == test_array).all()
|
||||
|
||||
|
||||
def test_shifted_correlation_multi_selector(trajectory):
|
||||
def selector(frame):
|
||||
indices = []
|
||||
for i in range(3):
|
||||
x = frame[:, 0].flatten()
|
||||
index = np.argwhere((x >= i) * (x < i + 1))
|
||||
indices.append(index.flatten())
|
||||
return indices
|
||||
|
||||
OW = trajectory.subset(atom_name="OW")
|
||||
t, result = correlation.shifted_correlation(
|
||||
correlation.isf, OW, segments=10, skip=0.1, points=10, selector=selector
|
||||
)
|
||||
assert result.shape == (3, 9)
|
Reference in New Issue
Block a user