Compare commits
	
		
			4 Commits
		
	
	
		
			refactor_l
			...
			0ffce2f17a
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 0ffce2f17a | ||
|  | 0eff84910b | ||
|  | dae2d6ed95 | ||
|  | ec4094cd92 | 
| @@ -18,7 +18,7 @@ def log_indices(first: int, last: int, num: int = 100) -> np.ndarray: | ||||
|     return np.unique(np.int_(ls) - 1 + first) | ||||
|  | ||||
|  | ||||
| @autosave_data(2) | ||||
| @autosave_data(nargs=2, kwargs_keys=('selector', 'segments', 'skip', 'window', 'average', 'points',), version=1.0) | ||||
| def shifted_correlation( | ||||
|     function: Callable, | ||||
|     frames: Coordinates, | ||||
| @@ -199,7 +199,7 @@ def msd( | ||||
|         raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!') | ||||
|  | ||||
|  | ||||
| def isf( | ||||
| def isf_raw( | ||||
|     start_frame: CoordinateFrame, | ||||
|     end_frame: CoordinateFrame, | ||||
|     q: float = 22.7, | ||||
| @@ -216,29 +216,59 @@ def isf( | ||||
|         displacements = displacements_without_drift(start_frame, end_frame, trajectory) | ||||
|     if axis == "all": | ||||
|         distance = (displacements**2).sum(axis=1) ** 0.5 | ||||
|         return np.sinc(distance * q / np.pi).mean() | ||||
|         return np.sinc(distance * q / np.pi) | ||||
|     elif axis == "xy" or axis == "yx": | ||||
|         distance = (displacements[:, [0, 1]]**2).sum(axis=1) ** 0.5 | ||||
|         return np.real(jn(0, distance * q)).mean() | ||||
|         return np.real(jn(0, distance * q)) | ||||
|     elif axis == "xz" or axis == "zx": | ||||
|         distance = (displacements[:, [0, 2]]**2).sum(axis=1) ** 0.5 | ||||
|         return np.real(jn(0, distance * q)).mean() | ||||
|         return np.real(jn(0, distance * q)) | ||||
|     elif axis == "yz" or axis == "zy": | ||||
|         distance = (displacements[:, [1, 2]]**2).sum(axis=1) ** 0.5 | ||||
|         return np.real(jn(0, distance * q)).mean() | ||||
|         return np.real(jn(0, distance * q)) | ||||
|     elif axis == "x": | ||||
|         distance = np.abs(displacements[:, 0]) | ||||
|         return np.mean(np.cos(np.abs(q * distance))) | ||||
|         return np.cos(np.abs(q * distance)) | ||||
|     elif axis == "y": | ||||
|         distance = np.abs(displacements[:, 1]) | ||||
|         return np.mean(np.cos(np.abs(q * distance))) | ||||
|         return np.cos(np.abs(q * distance)) | ||||
|     elif axis == "z": | ||||
|         distance = np.abs(displacements[:, 2]) | ||||
|         return np.mean(np.cos(np.abs(q * distance))) | ||||
|         return np.cos(np.abs(q * distance)) | ||||
|     else: | ||||
|         raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!') | ||||
|  | ||||
|  | ||||
| def isf( | ||||
|     start_frame: CoordinateFrame, | ||||
|     end_frame: CoordinateFrame, | ||||
|     q: float = 22.7, | ||||
|     trajectory: Coordinates = None, | ||||
|     axis: str = "all", | ||||
| ) -> float: | ||||
|     """ | ||||
|     Incoherent intermediate scattering function averaged over all particles. | ||||
|     See isf_raw for details. | ||||
|     """ | ||||
|     return isf_raw(start_frame, end_frame, q=q, trajectory=trajectory, axis=axis).mean() | ||||
|  | ||||
|  | ||||
| def isf_mean_var( | ||||
|     start_frame: CoordinateFrame, | ||||
|     end_frame: CoordinateFrame, | ||||
|     q: float = 22.7, | ||||
|     trajectory: Coordinates = None, | ||||
|     axis: str = "all", | ||||
| ) -> float: | ||||
|     """ | ||||
|     Incoherent intermediate scattering function averaged over all particles and the | ||||
|     variance. | ||||
|     See isf_raw for details. | ||||
|     """ | ||||
|     values = isf_raw(start_frame, end_frame, q=q, trajectory=trajectory, axis=axis) | ||||
|     return values.mean(), values.var() | ||||
|  | ||||
|  | ||||
| def rotational_autocorrelation( | ||||
|     start_frame: CoordinateFrame, end_frame: CoordinateFrame, order: int = 2 | ||||
| ) -> float: | ||||
| @@ -430,6 +460,7 @@ def non_gaussian_parameter( | ||||
|     end_frame: CoordinateFrame, | ||||
|     trajectory: Coordinates = None, | ||||
|     axis: str = "all", | ||||
|     full_output = False, | ||||
| ) -> float: | ||||
|     r""" | ||||
|     Calculate the non-Gaussian parameter. | ||||
| @@ -442,27 +473,41 @@ def non_gaussian_parameter( | ||||
|     else: | ||||
|         vectors = displacements_without_drift(start_frame, end_frame, trajectory) | ||||
|     if axis == "all": | ||||
|         r = (vectors**2).sum(axis=1) | ||||
|         r2 = (vectors**2).sum(axis=1) | ||||
|         dimensions = 3 | ||||
|     elif axis == "xy" or axis == "yx": | ||||
|         r = (vectors[:, [0, 1]]**2).sum(axis=1) | ||||
|         r2 = (vectors[:, [0, 1]]**2).sum(axis=1) | ||||
|         dimensions = 2 | ||||
|     elif axis == "xz" or axis == "zx": | ||||
|         r = (vectors[:, [0, 2]]**2).sum(axis=1) | ||||
|         r2 = (vectors[:, [0, 2]]**2).sum(axis=1) | ||||
|         dimensions = 2 | ||||
|     elif axis == "yz" or axis == "zy": | ||||
|         r = (vectors[:, [1, 2]]**2).sum(axis=1) | ||||
|         r2 = (vectors[:, [1, 2]]**2).sum(axis=1) | ||||
|         dimensions = 2 | ||||
|     elif axis == "x": | ||||
|         r = vectors[:, 0] ** 2 | ||||
|         r2 = vectors[:, 0] ** 2 | ||||
|         dimensions = 1 | ||||
|     elif axis == "y": | ||||
|         r = vectors[:, 1] ** 2 | ||||
|         r2 = vectors[:, 1] ** 2 | ||||
|         dimensions = 1 | ||||
|     elif axis == "z": | ||||
|         r = vectors[:, 2] ** 2 | ||||
|         r2 = vectors[:, 2] ** 2 | ||||
|         dimensions = 1 | ||||
|     else: | ||||
|         raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!') | ||||
|      | ||||
|     m2 = np.mean(r2) | ||||
|     m4 = np.mean(r2**2) | ||||
|     if m2 == 0.0: | ||||
|         if full_output: | ||||
|             return 0.0, 0.0, 0.0 | ||||
|         else: | ||||
|             return 0.0 | ||||
|  | ||||
|     alpha_2 = (m4 / ((1 + 2 / dimensions) * m2**2)) - 1 | ||||
|     if full_output: | ||||
|         return alpha_2, m2, m4 | ||||
|     else: | ||||
|         return alpha_2 | ||||
|  | ||||
|  | ||||
|     return (np.mean(r**2) / ((1 + 2 / dimensions) * (np.mean(r) ** 2))) - 1 | ||||
|   | ||||
| @@ -357,6 +357,37 @@ def quick1etau(t: ArrayLike, C: ArrayLike, n: int = 7) -> float: | ||||
|     return tau_est | ||||
|  | ||||
|  | ||||
| def quicknongaussfit(t, C, width=2): | ||||
|     """ | ||||
|     Estimates the time and height of the peak in the non-Gaussian function. | ||||
|     C is C(t) the correlation function | ||||
|     """ | ||||
|     def ffunc(t,y0,A_main,log_tau_main,sig_main): | ||||
|         main_peak = A_main*np.exp(-(t - log_tau_main)**2 / (2 * sig_main**2)) | ||||
|         return y0 + main_peak | ||||
|      | ||||
|     # first rough estimate, the closest time. This is returned if the interpolation fails! | ||||
|     tau_est = t[np.argmax(C)] | ||||
|     nG_max = np.amax(C) | ||||
|     try: | ||||
|         with np.errstate(invalid='ignore'): | ||||
|             corr = C[t > 0] | ||||
|             time = np.log10(t[t > 0]) | ||||
|             tau = time[np.argmax(corr)] | ||||
|             mask = (time>tau-width/2) & (time<tau+width/2) | ||||
|             time = time[mask] ; corr = corr[mask] | ||||
|             nG_min = C[t > 0].min() | ||||
|             guess = [nG_min, nG_max-nG_min, tau, 0.6] | ||||
|             popt = curve_fit(ffunc, time, corr, p0=guess, maxfev=10000)[0] | ||||
|             tau_est = 10**popt[-2] | ||||
|             nG_max = popt[0] + popt[1] | ||||
|     except: | ||||
|         pass | ||||
|     if np.isnan(tau_est): | ||||
|         tau_est = np.inf | ||||
|     return tau_est, nG_max | ||||
|  | ||||
|  | ||||
| def susceptibility( | ||||
|     time: NDArray, correlation: NDArray, **kwargs | ||||
| ) -> tuple[NDArray, NDArray]: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user