use fitmodels, return dict
This commit is contained in:
parent
b20d7e61b2
commit
64f6697573
@ -1,4 +1,5 @@
|
||||
import multiprocessing
|
||||
from typing import Callable
|
||||
|
||||
import numpy as np
|
||||
|
||||
@ -6,10 +7,18 @@ from numpy import arange
|
||||
from numpy.random import default_rng
|
||||
from scipy.optimize import least_squares
|
||||
|
||||
from nmreval.models.relaxation import TwoSatRecAbsolute
|
||||
from nmreval.utils.text import convert
|
||||
|
||||
|
||||
class Bootstrap:
|
||||
def __init__(self, func, x, y, p, bounds=None, n_sims=1000, seed=None):
|
||||
self._func = func
|
||||
if hasattr(func, 'func'):
|
||||
self._func = func.func
|
||||
self.model = func
|
||||
else:
|
||||
self._func = func
|
||||
self.model = None
|
||||
self._x = x
|
||||
self._y = y
|
||||
self._bounds = bounds
|
||||
@ -18,15 +27,15 @@ class Bootstrap:
|
||||
self.num = len(self._x)
|
||||
self._p_start = p
|
||||
|
||||
self.manager = multiprocessing.Manager()
|
||||
|
||||
self.rng = default_rng(seed=seed)
|
||||
|
||||
def resid(self, pp, xx, yy):
|
||||
return self._func(xx, *pp) - yy
|
||||
|
||||
def run(self):
|
||||
shared_list = self.manager.list()
|
||||
|
||||
manager = multiprocessing.Manager()
|
||||
shared_list = manager.list()
|
||||
|
||||
sims_to_do = self.n_sims
|
||||
while sims_to_do > 0:
|
||||
@ -44,13 +53,22 @@ class Bootstrap:
|
||||
|
||||
sims_to_do = self.n_sims - len(shared_list)
|
||||
|
||||
parameter = np.empty((self.n_sims, len(self._p_start)))
|
||||
chi = np.empty(self.n_sims)
|
||||
for i, (p, c) in enumerate(shared_list):
|
||||
parameter[i] = p
|
||||
chi[i] = c
|
||||
return self.create_results(list(shared_list))
|
||||
|
||||
return parameter, chi
|
||||
def create_results(self, raw_results: list) -> dict:
|
||||
|
||||
if self.model is not None:
|
||||
keys = [convert(p, old='tex', new='str', brackets=False) for p in self.model.params] + ['chi2']
|
||||
else:
|
||||
keys = ['p'+str(i) for i in range(len(self._p_start))] + ['chi2']
|
||||
|
||||
dic = {k: np.empty(self.n_sims) for k in keys}
|
||||
|
||||
for i, p in enumerate(raw_results):
|
||||
for k, p_k in zip(keys, p):
|
||||
dic[k][i] = p_k
|
||||
|
||||
return dic
|
||||
|
||||
def fit(self, ind, ret_list):
|
||||
r = least_squares(self.resid, self._p_start, bounds=self._bounds, args=(self._x[ind], self._y[ind]))
|
||||
@ -58,15 +76,10 @@ class Bootstrap:
|
||||
print('failure', r.status)
|
||||
return
|
||||
|
||||
res = []
|
||||
res.extend(r.x.tolist())
|
||||
|
||||
ret_list.append((res, sum(r.fun**2)))
|
||||
|
||||
|
||||
def mag(xx, *p):
|
||||
return p[0]*(1-np.exp(-(xx/p[1])**p[2])) + p[3]*(1-np.exp(-(xx/p[4])**p[5])) + p[6]
|
||||
res = r.x.tolist()
|
||||
res.append(np.sum(r.fun**2))
|
||||
|
||||
ret_list.append(res)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -76,13 +89,15 @@ if __name__ == '__main__':
|
||||
bounds = ([0] * 6 + [-np.inf], [np.inf, np.inf, 1, np.inf, 20, 1, np.inf])
|
||||
# bounds = (-np.inf, np.inf)
|
||||
|
||||
mag = TwoSatRecAbsolute.func
|
||||
|
||||
y = mag(x, *p) + 10 * (2 * np.random.randn(len(x)) - 1)
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
plt.semilogx(x, y)
|
||||
plt.show()
|
||||
|
||||
bootstrap3 = Bootstrap(mag, x, y, p, bounds=bounds, n_sims=10)
|
||||
from pprint import pprint
|
||||
pprint(bootstrap3.run())
|
||||
|
||||
bootstrap3 = Bootstrap(TwoSatRecAbsolute, x, y, p, bounds=bounds, n_sims=10)
|
||||
print(bootstrap3.run())
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user