Compare commits

..

1 Commits

Author SHA1 Message Date
Dominik Demuth
66b56c9be6 add sigmoid function to basic models 2025-02-11 18:29:26 +01:00
4 changed files with 7 additions and 52 deletions

View File

@ -1,16 +0,0 @@
/* integrands used in quadrature integration with scipy's LowLevelCallables */
#include <math.h>
double anistropicDiffusion(double x, void *user_data) {
double *c = (double *)user_data;
double q = c[0];
double t = c[1];
double d_perp = c[2];
double d_par = c[3];
double cos_theta = cos(x);
double sin_theta = sin(x);
return exp(-q * q * t * (d_par * cos_theta * cos_theta + d_perp * sin_theta * sin_theta)) * sin_theta;
}

Binary file not shown.

View File

@ -5,17 +5,6 @@ from ctypes import CDLL, c_double, c_void_p
from ..lib.logger import logger
diffusion_lib = None
try:
diffusion_lib = CDLL(str(Path(__file__).parents[1] / 'clib' / 'diffusion.so'))
diffusion_lib.anistropicDiffusion.restype = c_double
diffusion_lib.anistropicDiffusion.argtypes = (c_double, c_void_p)
HAS_C_FUNCS = True
except OSError:
HAS_C_FUNCS = False
lib = None
try:
lib = CDLL(str(Path(__file__).parents[1] / 'clib' / 'integrate.so'))
@ -50,8 +39,10 @@ try:
lib.energyDistSuscImag.restype = c_double
lib.energyDistSuscImag.argtypes = (c_double, c_void_p)
HAS_C_FUNCS = True
logger.info('Use C functions')
except OSError:
HAS_C_FUNCS = False
logger.info('Use python functions')

View File

@ -1,11 +1,7 @@
from ctypes import c_double, cast, c_void_p, pointer
import numpy as np
from scipy import special as special, LowLevelCallable
from scipy.integrate import quad
from scipy import special as special
from ..utils import gamma
from nmreval.distributions.helper import HAS_C_FUNCS, diffusion_lib
class Diffusion:
@ -107,29 +103,13 @@ class AnisotropicDiffusion(object):
tp = x
relax = np.exp(-(tp/trel)**brel)*np.exp(-(tp/trel)**brel)
q = g * nucleus * tp
q_squared = np.power(g * nucleus * tp, 2)
t = 2 * tp / 3 + tm
z = np.sqrt(q_squared * (d_par - d_perp) * t)
# Callaghan eq (6.89)
if HAS_C_FUNCS:
# divide by 2 to normalize by integral sin(x), x=0..pi
diffusion_decay = AnisotropicDiffusion._integrate_c(q, t, d_perp, d_par) / 2
else:
z = np.sqrt(q**2 * (d_par - d_perp) * t)
diffusion_decay = np.exp(-q**2 * t * d_perp) * special.erf(z) / z
diffs = np.exp(-q_squared*t*d_perp) * special.erf(z) / z
return m0 * diffusion_decay * relax
@staticmethod
def _integrate_c(q, t, d_perp, d_par) -> np.ndarray:
diffusion_decay = np.zeros_like(t)
for (i, t_i) in enumerate(t):
c = (c_double * 4)(q, t_i, d_perp, d_par)
user_data = cast(pointer(c), c_void_p)
diffusion_decay[i] = quad(LowLevelCallable(diffusion_lib.anistropicDiffusion, user_data), 0, np.pi, epsabs=1e-13)[0]
return diffusion_decay
return m0 * diffs * relax
class Peschier: