fixed taps/space, update documentation

This commit is contained in:
Markus Rosenstihl 2014-11-26 15:46:27 +00:00
parent 7aeb010a83
commit d656daef5b

View File

@ -2,55 +2,58 @@ import numpy
import sys
import autophase
class DamarisFFT:
def clip(self, start=None, stop=None):
"""
:param float start: beginning of clipping
:param float stop: end of clipping
Method for clipping data, returns only the timesignal
between start and stop
is returned.
class DamarisFFT:
"""
Class for Fourier transforming data.
Provides several helper and apodization functions
"""
def clip( self, start=None, stop=None ):
"""
Method for clipping data, returns only the data between start and stop
start and stop can be either time or frequency.
The unit is automatically determined
The unit is automatically determined (Hz or s).
:param float start: beginning of clipping in s
:param float stop: end of clipping in s
"""
# check if start/stop order is properly
if start > stop:
# I could swap start/stop actually
# TODO swap values?
raise
# if one uses clip as a "placeholder"
start, stop = stop, start
# do nothing if one uses clip as a "placeholder"
if start == None and stop == None:
return self
if start == None:
start = 0
start = self.x[ 0 ]
if stop == None:
stop = -1
stop = self.x[ -1 ]
# check if data is fft which changes the start/stop units
# TODO should get nicer(failsafe), i.e. flags in the object?
if self.xlabel == "Frequency / Hz":
isfft = True
start = self.x.size*(0.5 + start/self.sampling_rate)
stop = self.x.size*(0.5 + stop/self.sampling_rate)
start = self.x.size * (0.5 + start / self.sampling_rate)
stop = self.x.size * (0.5 + stop / self.sampling_rate)
else:
isfft = False
# get the corresponding indices
start *= self.sampling_rate
stop *= self.sampling_rate
stop *= self.sampling_rate
# check if boundaries make sense, raise exception otherwise
if numpy.abs(int(start)-int(stop))<=0:
raise ValueError("start stop too close: There are no values in the given boundaries!")
for ch in xrange(len(self.y)):
if numpy.abs( int( start ) - int( stop ) ) <= 0:
raise ValueError( "start stop too close: There are no samples in the given boundaries!" )
# clip the data for each channel
# TODO multi records
self.y[ch] = self.y[ch][int(start):int(stop)]
# TODO what to do with x? Should it start from 0 or from start?
# self.x = self.x[:int(stop)-int(start)]
self.x = self.x[int(start):int(stop)]
for ch in xrange( len( self.y ) ):
self.y[ ch ] = self.y[ ch ][ int( start ):int( stop ) ]
self.x = self.x[ int( start ):int( stop ) ]
return self
def baseline(self, last_part=0.1):
def baseline( self, last_part=0.1 ):
"""
Correct the baseline of your data by subtracting the mean of the
last_part fraction of your data.
@ -59,152 +62,166 @@ class DamarisFFT:
last_part defaults to 0.1, i.e. last 10% of your data
"""
# TODO baselinecorrection for spectra after:
# TODO baseline correction for spectra after:
# Heuer, A; Haeberlen, U.: J. Mag. Res.(1989) 85, Is 1, 79-94
# Should I create an empty object?
# I deided to do NOT a copy, but
# rather modify the object
n = int(self.x.size*last_part)
for ch in xrange(len(self.y)):
self.y[ch] -= self.y[ch][-n:].mean()
# Skip the following due to design reasons
# new_object.was_copied = True
n = int( self.x.size * last_part )
for ch in xrange( len( self.y ) ):
self.y[ ch ] -= self.y[ ch ][ -n: ].mean( )
return self
"""
Apodization functions:
* exp_window and gauss_window are S/N enhancing,
* dexp_window and traf_window are resolution enhancing
* standard windows [hamming, hanning, bartlett, blackman, kaiser-bessel]
are also available
self.x = time points
elf.aquisition_time = aquisition time (no. samples / sampling_rate)
line_broadening = line broadening factor (standard = 10 Hz)
gaussian_multiplicator = Gaussian Multiplication Factor for
the double exponential apodization
function (standard = 0.3)
"""
def exp_window(self, line_broadening=10):
def exp_window( self, line_broadening=10 ):
"""
Exponential window function
:param float line_broadening: Applies apodization to time signal
:param float line_broadening: default 10, line broadening factor in Hz
.. math::
\\exp\\left(-\\pi\\cdot \\textsf{line_broadening} \\cdot t\\right)
"""
apod = numpy.exp(-self.x*numpy.pi*line_broadening)
for i in range(2):
self.y[i] = self.y[i]*apod
apod = numpy.exp( -self.x * numpy.pi * line_broadening )
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def gauss_window(self, line_broadening=10):
apod = numpy.exp(-(self.x*line_broadening)**2)
for i in range(2):
self.y[i] = self.y[i]*apod
def gauss_window( self, line_broadening=10 ):
"""
Gaussian window function
:param float line_broadening: default 10, line broadening factor in Hz
.. math:: \\exp\\left(- (\\textsf{line_broadening} \\cdot t)^2\\right)
"""
apod = numpy.exp( -(self.x * line_broadening) ** 2 )
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def dexp_window(self, line_broadening=-10, gaussian_multiplicator=0.3):
apod = numpy.exp(-(self.x*line_broadening - gaussian_multiplicator*self.x.max())**2)
for i in range(2):
self.y[i] = self.y[i]*apod
def dexp_window( self, line_broadening=-10, gaussian_multiplicator=0.3 ):
apod = numpy.exp( -(self.x * line_broadening - gaussian_multiplicator * self.x.max( )) ** 2 )
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def traf_window(self, line_broadening=10):
apod = (numpy.exp(-self.x*line_broadening))**2 / ( (numpy.exp(-self.x*line_broadening))**3
+ (numpy.exp(-self.x.max()*line_broadening))**3 )
for i in range(2):
self.y[i] = self.y[i]*apod
def traf_window( self, line_broadening=10 ):
apod = (numpy.exp( -self.x * line_broadening )) ** 2 / ( (numpy.exp( -self.x * line_broadening )) ** 3
+ (
numpy.exp( -self.x.max( ) * line_broadening )) ** 3 )
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def hanning_window(self):
apod = numpy.hanning(self.x.size)
for i in range(2):
self.y[i] = self.y[i]*apod
def hanning_window( self ):
"""
Symmetric centered window (hanning)
"""
apod = numpy.hanning( self.x.size )
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def hamming_window(self):
apod = numpy.hamming(self.x.size)
for i in range(2):
self.y[i] = self.y[i]*apod
def hamming_window( self ):
"""
Symmetric centered window (hamming)
"""
apod = numpy.hamming( self.x.size )
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def blackman_window(self):
apod = numpy.blackman(self.x.size)
for i in range(2):
self.y[i] = self.y[i]*apod
def blackman_window( self ):
"""
Symmetric centered window (blackmann)
"""
apod = numpy.blackman( self.x.size )
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def bartlett_window(self):
apod = numpy.bartlett(self.x.size)
for i in range(2):
self.y[i] = self.y[i]*apod
def bartlett_window( self ):
"""
Symmetric centered window (bartlett)
"""
apod = numpy.bartlett( self.x.size )
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def kaiser_window(self, beta=4, use_scipy=None):
def kaiser_window( self, beta=4, use_scipy=None ):
"""
Symmetric centered window (kaiser)
"""
if use_scipy == None:
# modified Bessel function of zero kind order from somewhere
def I_0(x):
i0=0
fac = lambda n:reduce(lambda a,b:a*(b+1),range(n),1)
for n in xrange(20):
i0 += ((x/2.0)**n/(fac(n)))**2
def I_0( x ):
i0 = 0
fac = lambda n: reduce( lambda a, b: a * (b + 1), range( n ), 1 )
for n in xrange( 20 ):
i0 += ((x / 2.0) ** n / (fac( n ))) ** 2
return i0
t = numpy.arange(self.x.size, type=numpy.Float) - self.x.size/2.0
t = numpy.arange( self.x.size, type=numpy.Float ) - self.x.size / 2.0
T = self.x.size
# this is the window function array
apod = I_0(beta*numpy.sqrt(1-(2*t/T)**2))/I_0(beta)
apod = I_0( beta * numpy.sqrt( 1 - (2 * t / T) ** 2 ) ) / I_0( beta )
else:
# alternative method using scipy
import scipy
apod=scipy.kaiser(self.x.size, beta)
import scipy
for i in range(2):
self.y[i] = self.y[i]*apod
return self
apod = scipy.kaiser( self.x.size, beta )
def autophase(self):
"""
works nice with a SNR above 20 dB
10 V signal height to 1V noise width
"""
autophase.get_phase(self)
for i in range( 2 ):
self.y[ i ] = self.y[ i ] * apod
return self
def fft(self, samples=None):
def autophase( self ):
"""
Fouriertransform the timesignal inplace.
For "zerofilling" set "samples" to a value higher than your data length.
Shorten "samples" to truncate your data.
samples takes only integer values
Automatically phases the data to maximize real part.
Works nice with a SNR above 20 dB, i.e.
10 V signal to 0.1 V noise amplitude.
"""
autophase.get_phase( self )
return self
def fft( self, samples=None ):
"""
Calculate the Fourier transform of the data inplace.
For zero filling set **samples** to a value higher than your data length,
smaller values will truncate your data.
:param int samples: default=None, if given, number of samples returned
"""
# Is this smart performance wise? Should I create an empty object?
# Tests showed that this try except block performed 3.78ms
# timesignal.baseline().fft()
# with out this it needed 4.41 ms, thus this is justified :-)
#try:
# if self.was_copied:
# new_object = self
#except:
# new_object = self+0
fft_of_signal = numpy.fft.fft(self.y[0] + 1j*self.y[1], n=samples)
fft_of_signal = numpy.fft.fftshift(fft_of_signal)
dwell = 1.0/self.sampling_rate
fft_of_signal = numpy.fft.fft( self.y[ 0 ] + 1j * self.y[ 1 ], n=samples )
fft_of_signal = numpy.fft.fftshift( fft_of_signal )
dwell = 1.0 / self.sampling_rate
n = fft_of_signal.size
fft_frequencies = numpy.fft.fftfreq(n, dwell)
self.x = numpy.fft.fftshift(fft_frequencies)
self.y[0] = fft_of_signal.real
self.y[1] = fft_of_signal.imag
self.set_xlabel("Frequency / Hz")
fft_frequencies = numpy.fft.fftfreq( n, dwell )
self.x = numpy.fft.fftshift( fft_frequencies )
self.y[ 0 ] = fft_of_signal.real
self.y[ 1 ] = fft_of_signal.imag
self.set_xlabel( "Frequency / Hz" )
return self
def magnitude(self):
def magnitude( self ):
"""
Return absolute signal, i.e.:
.. math::
y[0] &= \\sqrt{y[0]^2 + y[1]^2} \\\\
y[1] &= 0
"""
# this should calculate the absolute value, and set the imag channel to zero
self.y[0] = numpy.sqrt(self.y [0]**2+self.y [1]**2)
self.y[1] *= 0 #self.y[0].copy()
self.y[ 0 ] = numpy.sqrt( self.y[ 0 ] ** 2 + self.y[ 1 ] ** 2 )
self.y[ 1 ] *= 0 # self.y[0].copy()
return self