fixed taps/space, update documentation
This commit is contained in:
parent
7aeb010a83
commit
d656daef5b
@ -2,33 +2,38 @@ import numpy
|
|||||||
import sys
|
import sys
|
||||||
import autophase
|
import autophase
|
||||||
|
|
||||||
|
|
||||||
class DamarisFFT:
|
class DamarisFFT:
|
||||||
|
"""
|
||||||
|
Class for Fourier transforming data.
|
||||||
|
Provides several helper and apodization functions
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
def clip( self, start=None, stop=None ):
|
def clip( self, start=None, stop=None ):
|
||||||
"""
|
"""
|
||||||
:param float start: beginning of clipping
|
Method for clipping data, returns only the data between start and stop
|
||||||
:param float stop: end of clipping
|
|
||||||
|
|
||||||
Method for clipping data, returns only the timesignal
|
|
||||||
between start and stop
|
|
||||||
is returned.
|
|
||||||
start and stop can be either time or frequency.
|
start and stop can be either time or frequency.
|
||||||
The unit is automatically determined
|
The unit is automatically determined (Hz or s).
|
||||||
|
|
||||||
|
:param float start: beginning of clipping in s
|
||||||
|
:param float stop: end of clipping in s
|
||||||
|
|
||||||
"""
|
"""
|
||||||
# check if start/stop order is properly
|
# check if start/stop order is properly
|
||||||
if start > stop:
|
if start > stop:
|
||||||
# I could swap start/stop actually
|
start, stop = stop, start
|
||||||
# TODO swap values?
|
|
||||||
raise
|
# do nothing if one uses clip as a "placeholder"
|
||||||
# if one uses clip as a "placeholder"
|
|
||||||
if start == None and stop == None:
|
if start == None and stop == None:
|
||||||
return self
|
return self
|
||||||
|
|
||||||
if start == None:
|
if start == None:
|
||||||
start = 0
|
start = self.x[ 0 ]
|
||||||
if stop == None:
|
if stop == None:
|
||||||
stop = -1
|
stop = self.x[ -1 ]
|
||||||
|
|
||||||
# check if data is fft which changes the start/stop units
|
# check if data is fft which changes the start/stop units
|
||||||
# TODO should get nicer(failsafe), i.e. flags in the object?
|
|
||||||
if self.xlabel == "Frequency / Hz":
|
if self.xlabel == "Frequency / Hz":
|
||||||
isfft = True
|
isfft = True
|
||||||
start = self.x.size * (0.5 + start / self.sampling_rate)
|
start = self.x.size * (0.5 + start / self.sampling_rate)
|
||||||
@ -40,13 +45,11 @@ class DamarisFFT:
|
|||||||
stop *= self.sampling_rate
|
stop *= self.sampling_rate
|
||||||
# check if boundaries make sense, raise exception otherwise
|
# check if boundaries make sense, raise exception otherwise
|
||||||
if numpy.abs( int( start ) - int( stop ) ) <= 0:
|
if numpy.abs( int( start ) - int( stop ) ) <= 0:
|
||||||
raise ValueError("start stop too close: There are no values in the given boundaries!")
|
raise ValueError( "start stop too close: There are no samples in the given boundaries!" )
|
||||||
for ch in xrange(len(self.y)):
|
|
||||||
# clip the data for each channel
|
# clip the data for each channel
|
||||||
# TODO multi records
|
for ch in xrange( len( self.y ) ):
|
||||||
self.y[ ch ] = self.y[ ch ][ int( start ):int( stop ) ]
|
self.y[ ch ] = self.y[ ch ][ int( start ):int( stop ) ]
|
||||||
# TODO what to do with x? Should it start from 0 or from start?
|
|
||||||
# self.x = self.x[:int(stop)-int(start)]
|
|
||||||
self.x = self.x[ int( start ):int( stop ) ]
|
self.x = self.x[ int( start ):int( stop ) ]
|
||||||
return self
|
return self
|
||||||
|
|
||||||
@ -61,35 +64,16 @@ class DamarisFFT:
|
|||||||
"""
|
"""
|
||||||
# TODO baseline correction for spectra after:
|
# TODO baseline correction for spectra after:
|
||||||
# Heuer, A; Haeberlen, U.: J. Mag. Res.(1989) 85, Is 1, 79-94
|
# Heuer, A; Haeberlen, U.: J. Mag. Res.(1989) 85, Is 1, 79-94
|
||||||
# Should I create an empty object?
|
|
||||||
# I deided to do NOT a copy, but
|
|
||||||
# rather modify the object
|
|
||||||
n = int( self.x.size * last_part )
|
n = int( self.x.size * last_part )
|
||||||
for ch in xrange( len( self.y ) ):
|
for ch in xrange( len( self.y ) ):
|
||||||
self.y[ ch ] -= self.y[ ch ][ -n: ].mean( )
|
self.y[ ch ] -= self.y[ ch ][ -n: ].mean( )
|
||||||
# Skip the following due to design reasons
|
|
||||||
# new_object.was_copied = True
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
Apodization functions:
|
|
||||||
* exp_window and gauss_window are S/N enhancing,
|
|
||||||
* dexp_window and traf_window are resolution enhancing
|
|
||||||
* standard windows [hamming, hanning, bartlett, blackman, kaiser-bessel]
|
|
||||||
are also available
|
|
||||||
self.x = time points
|
|
||||||
elf.aquisition_time = aquisition time (no. samples / sampling_rate)
|
|
||||||
line_broadening = line broadening factor (standard = 10 Hz)
|
|
||||||
gaussian_multiplicator = Gaussian Multiplication Factor for
|
|
||||||
the double exponential apodization
|
|
||||||
function (standard = 0.3)
|
|
||||||
"""
|
|
||||||
def exp_window( self, line_broadening=10 ):
|
def exp_window( self, line_broadening=10 ):
|
||||||
"""
|
"""
|
||||||
Exponential window function
|
Exponential window function
|
||||||
|
|
||||||
:param float line_broadening: Applies apodization to time signal
|
:param float line_broadening: default 10, line broadening factor in Hz
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
@ -102,6 +86,14 @@ class DamarisFFT:
|
|||||||
return self
|
return self
|
||||||
|
|
||||||
def gauss_window( self, line_broadening=10 ):
|
def gauss_window( self, line_broadening=10 ):
|
||||||
|
"""
|
||||||
|
Gaussian window function
|
||||||
|
|
||||||
|
:param float line_broadening: default 10, line broadening factor in Hz
|
||||||
|
|
||||||
|
.. math:: \\exp\\left(- (\\textsf{line_broadening} \\cdot t)^2\\right)
|
||||||
|
|
||||||
|
"""
|
||||||
apod = numpy.exp( -(self.x * line_broadening) ** 2 )
|
apod = numpy.exp( -(self.x * line_broadening) ** 2 )
|
||||||
for i in range( 2 ):
|
for i in range( 2 ):
|
||||||
self.y[ i ] = self.y[ i ] * apod
|
self.y[ i ] = self.y[ i ] * apod
|
||||||
@ -115,36 +107,56 @@ class DamarisFFT:
|
|||||||
|
|
||||||
def traf_window( self, line_broadening=10 ):
|
def traf_window( self, line_broadening=10 ):
|
||||||
apod = (numpy.exp( -self.x * line_broadening )) ** 2 / ( (numpy.exp( -self.x * line_broadening )) ** 3
|
apod = (numpy.exp( -self.x * line_broadening )) ** 2 / ( (numpy.exp( -self.x * line_broadening )) ** 3
|
||||||
+ (numpy.exp(-self.x.max()*line_broadening))**3 )
|
+ (
|
||||||
|
numpy.exp( -self.x.max( ) * line_broadening )) ** 3 )
|
||||||
for i in range( 2 ):
|
for i in range( 2 ):
|
||||||
self.y[ i ] = self.y[ i ] * apod
|
self.y[ i ] = self.y[ i ] * apod
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def hanning_window( self ):
|
def hanning_window( self ):
|
||||||
|
"""
|
||||||
|
Symmetric centered window (hanning)
|
||||||
|
"""
|
||||||
apod = numpy.hanning( self.x.size )
|
apod = numpy.hanning( self.x.size )
|
||||||
for i in range( 2 ):
|
for i in range( 2 ):
|
||||||
self.y[ i ] = self.y[ i ] * apod
|
self.y[ i ] = self.y[ i ] * apod
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def hamming_window( self ):
|
def hamming_window( self ):
|
||||||
|
"""
|
||||||
|
Symmetric centered window (hamming)
|
||||||
|
"""
|
||||||
|
|
||||||
apod = numpy.hamming( self.x.size )
|
apod = numpy.hamming( self.x.size )
|
||||||
for i in range( 2 ):
|
for i in range( 2 ):
|
||||||
self.y[ i ] = self.y[ i ] * apod
|
self.y[ i ] = self.y[ i ] * apod
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def blackman_window( self ):
|
def blackman_window( self ):
|
||||||
|
"""
|
||||||
|
Symmetric centered window (blackmann)
|
||||||
|
"""
|
||||||
|
|
||||||
apod = numpy.blackman( self.x.size )
|
apod = numpy.blackman( self.x.size )
|
||||||
for i in range( 2 ):
|
for i in range( 2 ):
|
||||||
self.y[ i ] = self.y[ i ] * apod
|
self.y[ i ] = self.y[ i ] * apod
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def bartlett_window( self ):
|
def bartlett_window( self ):
|
||||||
|
"""
|
||||||
|
Symmetric centered window (bartlett)
|
||||||
|
"""
|
||||||
|
|
||||||
apod = numpy.bartlett( self.x.size )
|
apod = numpy.bartlett( self.x.size )
|
||||||
for i in range( 2 ):
|
for i in range( 2 ):
|
||||||
self.y[ i ] = self.y[ i ] * apod
|
self.y[ i ] = self.y[ i ] * apod
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def kaiser_window( self, beta=4, use_scipy=None ):
|
def kaiser_window( self, beta=4, use_scipy=None ):
|
||||||
|
"""
|
||||||
|
Symmetric centered window (kaiser)
|
||||||
|
"""
|
||||||
|
|
||||||
if use_scipy == None:
|
if use_scipy == None:
|
||||||
# modified Bessel function of zero kind order from somewhere
|
# modified Bessel function of zero kind order from somewhere
|
||||||
def I_0( x ):
|
def I_0( x ):
|
||||||
@ -161,6 +173,7 @@ class DamarisFFT:
|
|||||||
else:
|
else:
|
||||||
# alternative method using scipy
|
# alternative method using scipy
|
||||||
import scipy
|
import scipy
|
||||||
|
|
||||||
apod = scipy.kaiser( self.x.size, beta )
|
apod = scipy.kaiser( self.x.size, beta )
|
||||||
|
|
||||||
for i in range( 2 ):
|
for i in range( 2 ):
|
||||||
@ -169,29 +182,23 @@ class DamarisFFT:
|
|||||||
|
|
||||||
def autophase( self ):
|
def autophase( self ):
|
||||||
"""
|
"""
|
||||||
works nice with a SNR above 20 dB
|
Automatically phases the data to maximize real part.
|
||||||
10 V signal height to 1V noise width
|
|
||||||
|
Works nice with a SNR above 20 dB, i.e.
|
||||||
|
10 V signal to 0.1 V noise amplitude.
|
||||||
"""
|
"""
|
||||||
autophase.get_phase( self )
|
autophase.get_phase( self )
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def fft( self, samples=None ):
|
def fft( self, samples=None ):
|
||||||
"""
|
"""
|
||||||
Fouriertransform the timesignal inplace.
|
Calculate the Fourier transform of the data inplace.
|
||||||
For "zerofilling" set "samples" to a value higher than your data length.
|
For zero filling set **samples** to a value higher than your data length,
|
||||||
Shorten "samples" to truncate your data.
|
smaller values will truncate your data.
|
||||||
samples takes only integer values
|
|
||||||
|
:param int samples: default=None, if given, number of samples returned
|
||||||
|
|
||||||
"""
|
"""
|
||||||
# Is this smart performance wise? Should I create an empty object?
|
|
||||||
# Tests showed that this try except block performed 3.78ms
|
|
||||||
# timesignal.baseline().fft()
|
|
||||||
# with out this it needed 4.41 ms, thus this is justified :-)
|
|
||||||
#try:
|
|
||||||
# if self.was_copied:
|
|
||||||
# new_object = self
|
|
||||||
#except:
|
|
||||||
# new_object = self+0
|
|
||||||
fft_of_signal = numpy.fft.fft( self.y[ 0 ] + 1j * self.y[ 1 ], n=samples )
|
fft_of_signal = numpy.fft.fft( self.y[ 0 ] + 1j * self.y[ 1 ], n=samples )
|
||||||
fft_of_signal = numpy.fft.fftshift( fft_of_signal )
|
fft_of_signal = numpy.fft.fftshift( fft_of_signal )
|
||||||
dwell = 1.0 / self.sampling_rate
|
dwell = 1.0 / self.sampling_rate
|
||||||
@ -204,6 +211,16 @@ class DamarisFFT:
|
|||||||
return self
|
return self
|
||||||
|
|
||||||
def magnitude( self ):
|
def magnitude( self ):
|
||||||
|
"""
|
||||||
|
Return absolute signal, i.e.:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
y[0] &= \\sqrt{y[0]^2 + y[1]^2} \\\\
|
||||||
|
y[1] &= 0
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
# this should calculate the absolute value, and set the imag channel to zero
|
# this should calculate the absolute value, and set the imag channel to zero
|
||||||
self.y[ 0 ] = numpy.sqrt( self.y[ 0 ] ** 2 + self.y[ 1 ] ** 2 )
|
self.y[ 0 ] = numpy.sqrt( self.y[ 0 ] ** 2 + self.y[ 1 ] ** 2 )
|
||||||
self.y[ 1 ] *= 0 # self.y[0].copy()
|
self.y[ 1 ] *= 0 # self.y[0].copy()
|
||||||
|
Loading…
Reference in New Issue
Block a user