added flexibility

This commit is contained in:
Dominik Demuth
2024-11-28 11:07:44 +01:00
parent 4b8922ab55
commit 1c8befac3f
40 changed files with 629 additions and 476 deletions

0
python/__init__.py Normal file
View File

77
python/helpers.py Normal file
View File

@ -0,0 +1,77 @@
from __future__ import annotations
import pathlib
import re
import subprocess
from itertools import product
def prepare_rw_parameter(parameter: dict) -> list:
"""
Converts a dictionary of iterables to list of dictionaries
Example:
If Input is {'a': [1, 2, 3], 'b' = [4, 5]}, output is cartesian product of dictionary values, i.e.,
[{'a': 1, 'b': 4}, {'a': 1, 'b': 5}, {'a': 2, 'b': 4}, {'a': 2, 'b': 5}, {'a': 3, 'b': 4}, {'a': 3, 'b': 5}]
:param parameter: dictionary of list values
:return: list of dictionaries
"""
output = {}
for k, v in parameter.items():
if isinstance(v, (float, int)):
v = [v]
output[k] = v
output = list(dict(zip(parameter.keys(), step)) for step in product(*output.values()))
return output
def run_sims(
motion: str,
distribution: str,
ste: bool = True,
spectrum: bool = False,
exec_file: str = './rwsim',
config_file: str = './config.txt',
**kwargs
) -> None:
# set positional arguments
arguments = [exec_file, config_file, motion, distribution]
if ste:
arguments += ['--ste']
if spectrum:
arguments += ['--spectrum']
# add optional parameters that overwrite those given by config file
for k, v in kwargs.items():
arguments += [f'-{k.upper()}', f'{v}']
subprocess.run(arguments)
def find_config_file(var_params: dict) -> pathlib.Path:
# TODO handle situation if multiple files fit
pattern = re.compile('|'.join(([f'{k}={v:1.6e}' for (k, v) in var_params.items()])).replace('.', '\.').replace('+', '\+'))
for p_file in pathlib.Path('.').glob('*_parameter.txt'):
if len(re.findall(pattern, str(p_file))) == len(var_params):
return p_file
def read_parameter_file(path: str | pathlib.Path) -> dict[str, float]:
path = pathlib.Path(path)
if not path.exists():
raise ValueError(f"No parameter file found at {path}")
parameter_dict = {}
with path.open('r') as f:
for line in f.readlines():
k, v = line.split('=')
parameter_dict[k] = float(v)
k, v = line.split('=')
return parameter_dict

70
python/spectrum.py Normal file
View File

@ -0,0 +1,70 @@
import numpy
import numpy as np
from matplotlib import pyplot
# parameter for spectrum simulations
lb = 2e3
pulse_length = 2e-6
def dampening(x: np.ndarray, apod: float) -> np.ndarray:
"""
Calculate additional dampening to account e.g. for field inhomogeneities.
:param x: Time axis in seconds
:param apod: Dampening factor in 1/seconds
:return: Exponential dampening
"""
return np.exp(-apod * x)
def pulse_attn(freq: np.ndarray, t_pulse: float) -> np.ndarray:
"""
Calculate attenuation of signal to account for finite pulse lengths.
See Schmitt-Rohr/Spieß, eq. 2.126 for more information.
:param freq: Frequency axis in Hz
:param t_pulse: Assumed pulse length in s
:return: Attenuation factor.
"""
# cf. Schmitt-Rohr/Spieß eq. 2.126; omega_1 * t_p = pi/2
pi_half_squared = np.pi**2 / 4
omega = 2 * np.pi * freq
numerator = np.sin(np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 2))
denominator = np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 4)
return np.pi * numerator / denominator / 2
def post_process_spectrum(taus, apod, tpulse):
reduction_factor = np.zeros((taus.size, 5)) # hard-coded t_echo :(
for i, tau in enumerate(taus):
try:
raw_data = np.loadtxt(f'fid_tau={tau:.6e}.dat')
except OSError:
continue
t = raw_data[:, 0]
timesignal = raw_data[:, 1:]
timesignal *= dampening(t, apod)[:, None]
timesignal[0, :] /= 2
# FT to spectrum
freq = np.fft.fftshift(np.fft.fftfreq(t.size, d=1e-6))
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
spec *= pulse_attn(freq, t_pulse=tpulse)[:, None]
reduction_factor[i, :] = 2*timesignal[0, :]
plt.plot(freq, spec)
plt.show()
plt.semilogx(taus, reduction_factor, '.')
plt.show()

102
python/ste.py Normal file
View File

@ -0,0 +1,102 @@
import pathlib
import numpy
import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
from python.helpers import read_parameter_file
def ste_decay(x: np.ndarray, m0: float, t: float, beta: float, finfty: float) -> np.ndarray:
"""
Calculate stimulated-echo decay.
:param x: Mixing times in seconds.
:param m0: Amplitude
:param t: Correlation time in seconds
:param beta: Stretching parameter
:param finfty: Final plateau
:return: Stimulated-echo decay
"""
return m0 * ((1-finfty) * np.exp(-(x/t)**beta) + finfty)
def fit_decay(x: np.ndarray, y: np.ndarray, tevo: np.ndarray, verbose: bool = True) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
num_evo = y.shape[1]
tau_fit = np.empty((num_evo, 2))
tau_fit[:, 0] = tevo
beta_fit = np.empty((num_evo, 2))
beta_fit[:, 0] = tevo
finfty_fit = np.empty((num_evo, 2))
finfty_fit[:, 0] = tevo
scaled_y = (y-y[-1, :]) / (y[0, :]-y[-1, :])
for j in range(num_evo):
p0 = [scaled_y[0, 1], x[np.argmin(np.abs(scaled_y[:, j]-np.exp(-1)))], 0.5, 0.1]
try:
res = curve_fit(ste_decay, x, y[:, j], p0, bounds=[(0, 0, 0., 0), (np.inf, np.inf, 1, 1)])
except RuntimeError as e:
print(f'Fit {j+1} of {num_evo} failed with {e.args}')
continue
m0, tauc, beta, finfty = res[0]
if verbose:
print(f'Fit {j+1} of {num_evo}: tau_c = {tauc:.6e}, beta={beta:.4e}, amplitude = {m0: .4e}, f_infty={finfty:.4e}')
tau_fit[j, 1] = tauc
beta_fit[j, 1] = beta
finfty_fit[j, 1] = finfty
return tau_fit, beta_fit, finfty_fit
def fit_and_save_ste(parameter_file: pathlib.Path, plot_decays: bool = True, verbose: bool = True):
# read simulation parameters
parameter = read_parameter_file(parameter_file)
# files have form ste_arg=0.000000e+01_parameter.txt, first remove ste part then parameter.txt to get variables
varied_string = str(parameter_file).partition('_')[-1].rpartition('_')[0]
# make evolution times
tevo = np.linspace(parameter['tevo_start'], parameter['tevo_stop'], num=int(parameter['tevo_steps']))
raw_data_cc = np.loadtxt(f'coscos_{varied_string}.dat')
raw_data_ss = np.loadtxt(f'sinsin_{varied_string}.dat')
t_mix = raw_data_cc[:, 0]
cc_decay = raw_data_cc[:, 1:]
ss_decay = raw_data_ss[:, 1:]
if plot_decays:
fig_cc, ax_cc = plt.subplots()
ax_cc.set_title('Cos-Cos')
ax_cc.semilogx(t_mix, cc_decay, '.')
fig_ss, ax_ss = plt.subplots()
ax_ss.set_title('Sin-Sin')
ax_ss.semilogx(t_mix, ss_decay, '.')
plt.show()
print('Fit Cos-Cos')
tau_cc, beta_cc, finfty_cc = fit_decay(t_mix, cc_decay, tevo, verbose=verbose)
np.savetxt(f'tau_cc_{varied_string}.dat', tau_cc)
np.savetxt(f'beta_cc_{varied_string}.dat', beta_cc)
np.savetxt(f'finfty_cc_{varied_string}.dat', finfty_cc)
print('Fit Sin-Sin')
tau_ss, beta_ss, finfty_ss = fit_decay(t_mix, ss_decay, tevo, verbose=verbose)
np.savetxt(f'tau_ss_{varied_string}.dat', tau_ss)
np.savetxt(f'beta_ss_{varied_string}.dat', beta_ss)
np.savetxt(f'finfty_ss_{varied_string}.dat', finfty_ss)
return varied_string, tau_cc, beta_cc, finfty_cc, tau_ss, beta_ss, finfty_ss