split simulating and evaluating and stuff
This commit is contained in:
parent
5b5aacff0b
commit
e90c4c9543
49
angle_dependence.py
Normal file
49
angle_dependence.py
Normal file
@ -0,0 +1,49 @@
|
||||
import pathlib
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from python.helpers import read_parameter_file
|
||||
|
||||
angles = []
|
||||
tau_cc = []
|
||||
tau_ss = []
|
||||
tau2 = []
|
||||
|
||||
tevo = [5e-6, 10e-6]
|
||||
|
||||
|
||||
for fit_files in pathlib.Path('.').glob(f'IsotropicAngle/angle=*/Delta/tau=*/ste_fit_*.dat'):
|
||||
folder = fit_files.parent
|
||||
|
||||
file_base = fit_files.stem.replace('ste_fit_', '')
|
||||
parameter = read_parameter_file(folder / ('ste_' + file_base + '_parameter.txt'))
|
||||
angles.append(parameter['angle'])
|
||||
|
||||
with fit_files.open('r') as f:
|
||||
# tau of F2 is hidden in the second header line
|
||||
for _ in range(2):
|
||||
line = f.readline()
|
||||
tau2.append(float(re.search('tau=(.+?)\s', line).group(1)))
|
||||
|
||||
fit_values = np.loadtxt(fit_files)
|
||||
x = fit_values[:, 0]
|
||||
|
||||
# get indexes for given evolution times
|
||||
nearest_idx = [np.searchsorted(x, tt) for tt in tevo]
|
||||
tau_cc.append(fit_values[nearest_idx, 1])
|
||||
tau_ss.append(fit_values[nearest_idx, 4])
|
||||
|
||||
|
||||
plt.semilogy(angles, tau_cc, '-.')
|
||||
plt.semilogy(angles, tau_ss, '--')
|
||||
plt.semilogy(angles, tau2)
|
||||
|
||||
np.savetxt(
|
||||
'tau_angles.dat',
|
||||
np.c_[angles, tau_cc, tau_ss, tau2],
|
||||
header=f"Angle dependence of correlation times\nfor evolution times {tevo}\nangle->tau_cc->tauss->tau2"
|
||||
)
|
||||
|
||||
plt.show()
|
@ -1,17 +1,8 @@
|
||||
import pathlib
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from python.ste import *
|
||||
from python.helpers import *
|
||||
|
||||
# Simulation parameter
|
||||
motion = 'IsotropicAngle'
|
||||
distribution = 'Delta'
|
||||
# parameter = {}
|
||||
parameter = {
|
||||
"angle": [10],
|
||||
}
|
||||
|
||||
parameter = prepare_rw_parameter(parameter)
|
||||
|
||||
fig_tau_cc, ax_tau_cc = plt.subplots()
|
||||
ax_tau_cc.set_title('tau_cc')
|
||||
@ -31,12 +22,8 @@ ax_beta_ss.set_title('beta_ss')
|
||||
fig_finfty_ss, ax_finfty_ss = plt.subplots()
|
||||
ax_finfty_ss.set_title('f_infty_ss')
|
||||
|
||||
for variation in parameter:
|
||||
print(f"\nRun RW for {motion}/{distribution} with arguments {variation}\n")
|
||||
# run_sims(motion, distribution, ste=True, spectrum=False, **variation)
|
||||
|
||||
conf_file = find_config_file(motion, distribution, variation)
|
||||
|
||||
for conf_file in pathlib.Path('.').glob(f'IsotropicAngle/angle=*/Delta/tau=*/*_parameter.txt'):
|
||||
print(conf_file)
|
||||
vary_string, tau_cc, beta_cc, finfty_cc = fit_ste(conf_file, f'coscos', plot_decays=False, verbose=False)
|
||||
_, tau_ss, beta_ss, finfty_ss = fit_ste(conf_file, f'sinsin', plot_decays=False, verbose=False)
|
||||
_, tau_2, beta_2, finfty_2 = fit_ste(conf_file, f'f2', plot_decays=True, verbose=True)
|
||||
@ -50,9 +37,8 @@ for variation in parameter:
|
||||
ax_beta_ss.plot(*beta_ss.T, label=vary_string)
|
||||
ax_finfty_ss.plot(*finfty_ss.T, label=vary_string)
|
||||
|
||||
|
||||
np.savetxt(
|
||||
f'ste_fit_{vary_string}.dat',
|
||||
conf_file.with_name(f'ste_fit_{vary_string}.dat'),
|
||||
np.c_[
|
||||
tau_cc, beta_cc[:, 1], finfty_cc[:, 1],
|
||||
tau_ss[:, 1], beta_ss[:, 1], finfty_ss[:, 1],
|
||||
@ -62,8 +48,6 @@ for variation in parameter:
|
||||
f'tevo\ttaucc\tbetacc\tfinftycc\ttauss\tbetass\tfinftyss',
|
||||
)
|
||||
|
||||
|
||||
|
||||
for ax in [ax_tau_cc, ax_beta_cc, ax_finfty_cc, ax_tau_ss, ax_beta_ss, ax_finfty_ss]:
|
||||
ax.legend()
|
||||
plt.show()
|
||||
plt.show()
|
@ -54,23 +54,11 @@ def run_sims(
|
||||
subprocess.run(arguments)
|
||||
|
||||
|
||||
def find_config_file(motion: str, distribution: str, var_params: dict) -> pathlib.Path:
|
||||
# TODO handle situation if multiple files fit
|
||||
p_file = None
|
||||
if var_params:
|
||||
var_string = '|'.join(([f'{k}={v:1.6e}' for (k, v) in var_params.items()])).replace('.', '\.').replace('+', '\+')
|
||||
pattern = re.compile(var_string)
|
||||
for p_file in pathlib.Path('.').glob('*_parameter.txt'):
|
||||
if len(re.findall(pattern, str(p_file))) == len(var_params) and re.search(f'{motion}_{distribution}', str(p_file)):
|
||||
return p_file
|
||||
raise ValueError(f'No parameter file found for {motion}, {distribution}, {var_params}')
|
||||
else:
|
||||
for p_file in pathlib.Path('.').glob('*_parameter.txt'):
|
||||
if re.search(f'{motion}_{distribution}', str(p_file)):
|
||||
return p_file
|
||||
raise ValueError(f'No parameter file found for {motion}, {distribution}, {var_params}')
|
||||
|
||||
def find_config_file(config_path: str | pathlib.Path, varied_params: dict[str, float]) -> dict[str, float]:
|
||||
parameter = read_parameter_file(config_path)
|
||||
parameter.update(varied_params)
|
||||
|
||||
return parameter
|
||||
|
||||
|
||||
def read_parameter_file(path: str | pathlib.Path) -> dict[str, float]:
|
||||
@ -81,8 +69,9 @@ def read_parameter_file(path: str | pathlib.Path) -> dict[str, float]:
|
||||
parameter_dict = {}
|
||||
with path.open('r') as f:
|
||||
for line in f.readlines():
|
||||
if line.startswith('#'):
|
||||
continue
|
||||
k, v = line.split('=')
|
||||
parameter_dict[k] = float(v)
|
||||
|
||||
k, v = line.split('=')
|
||||
return parameter_dict
|
||||
|
@ -74,7 +74,7 @@ def fit_ste(
|
||||
# make evolution times
|
||||
tevo = np.linspace(parameter['tevo_start'], parameter['tevo_stop'], num=int(parameter['tevo_steps']))
|
||||
|
||||
raw_data = np.loadtxt(f'{prefix}_{varied_string}.dat')
|
||||
raw_data = np.loadtxt(parameter_file.with_name(f'{prefix}_{varied_string}.dat'))
|
||||
|
||||
t_mix = raw_data[:, 0]
|
||||
decay = raw_data[:, 1:]
|
||||
|
14
start_sims.py
Normal file
14
start_sims.py
Normal file
@ -0,0 +1,14 @@
|
||||
from python.helpers import *
|
||||
|
||||
#Simulation parameter
|
||||
motion = 'IsotropicAngle'
|
||||
distribution = 'Delta'
|
||||
parameter = {
|
||||
"angle": [10, 109.47],
|
||||
}
|
||||
|
||||
parameter = prepare_rw_parameter(parameter)
|
||||
|
||||
for variation in parameter:
|
||||
print(f"\nRun RW for {motion}/{distribution} with arguments {variation}\n")
|
||||
run_sims(motion, distribution, ste=True, spectrum=False, **variation)
|
Loading…
x
Reference in New Issue
Block a user