forked from IPKM/nmreval
		
	save fit parameter and agr; more doc
This commit is contained in:
		@@ -5,8 +5,8 @@
 | 
			
		||||
# from the environment for the first two.
 | 
			
		||||
SPHINXOPTS    ?=
 | 
			
		||||
SPHINXBUILD   ?= /autohome/dominik/miniconda3/bin/sphinx-build
 | 
			
		||||
SOURCEDIR     = /autohome/dominik/nmreval/docs/source
 | 
			
		||||
BUILDDIR      = /autohome/dominik/nmreval/docs/build
 | 
			
		||||
SOURCEDIR     = /autohome/dominik/nmreval/doc/source
 | 
			
		||||
BUILDDIR      = /autohome/dominik/nmreval/doc/_build
 | 
			
		||||
 | 
			
		||||
# Put it first so that "make" without argument is like "make help".
 | 
			
		||||
help:
 | 
			
		||||
 
 | 
			
		||||
@@ -1,12 +1,19 @@
 | 
			
		||||
"""
 | 
			
		||||
=======================
 | 
			
		||||
Spin-lattice relaxation
 | 
			
		||||
=======================
 | 
			
		||||
==========
 | 
			
		||||
T1 minimum
 | 
			
		||||
==========
 | 
			
		||||
 | 
			
		||||
Example for
 | 
			
		||||
``RelaxationEvaluation`` is used to get width parameter from a T1 minimum.
 | 
			
		||||
As a subclass of ``Relaxation`` it can also be used to calculate Relaxation times.
 | 
			
		||||
The basic steps are:
 | 
			
		||||
 | 
			
		||||
* Determine a T1 minimum with `nmreval.nmr.RelaxationEvaluation.calculate_t1_min`
 | 
			
		||||
* Calculate width parameter of a spectral density/coupling constants/... with
 | 
			
		||||
  ``RelaxationEvaluation.get_increase``
 | 
			
		||||
* Calculate correlation times from these values with ``RelaxationEvaluation.correlation_from_t1``
 | 
			
		||||
"""
 | 
			
		||||
import numpy as np
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
from nmreval.distributions import ColeDavidson
 | 
			
		||||
from nmreval.nmr import Relaxation, RelaxationEvaluation
 | 
			
		||||
@@ -20,7 +27,7 @@ temperature = 1000/inv_temp
 | 
			
		||||
# spectral density parameter
 | 
			
		||||
ea = 0.45
 | 
			
		||||
tau = 1e-21 * np.exp(ea / kB / temperature)
 | 
			
		||||
gamma_cd = 0.1
 | 
			
		||||
gamma_cd = 0.4
 | 
			
		||||
 | 
			
		||||
# interaction parameter
 | 
			
		||||
omega = 2*np.pi*46e6
 | 
			
		||||
@@ -28,40 +35,57 @@ delta = 120e3
 | 
			
		||||
eta = 0
 | 
			
		||||
 | 
			
		||||
r = Relaxation()
 | 
			
		||||
r.set_distribution(ColeDavidson)  # the only parameter that has to be set beforehand
 | 
			
		||||
r.set_distribution(ColeDavidson)  # the only parameter that set beforehand
 | 
			
		||||
 | 
			
		||||
t1_values = r.t1(omega, tau, gamma_cd, mode='bpp',
 | 
			
		||||
                 prefactor=Quadrupolar.relax(delta, eta))
 | 
			
		||||
# add noise
 | 
			
		||||
rng = np.random.default_rng(123456789)
 | 
			
		||||
rng = np.random.default_rng()
 | 
			
		||||
noisy = (rng.random(t1_values.size)-0.5) * 0.5 * t1_values + t1_values
 | 
			
		||||
 | 
			
		||||
# set parameter and data
 | 
			
		||||
ax_t1 = plt.figure().add_subplot()
 | 
			
		||||
ax_t1.semilogy(inv_temp, t1_values, label='Calculated T1')
 | 
			
		||||
ax_t1.semilogy(inv_temp, noisy, 'o', label='Noise')
 | 
			
		||||
ax_t1.legend()
 | 
			
		||||
 | 
			
		||||
plt.show()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Actual evaluation starts here
 | 
			
		||||
# setting necessary parameter
 | 
			
		||||
r_eval = RelaxationEvaluation()
 | 
			
		||||
r_eval.set_distribution(ColeDavidson)
 | 
			
		||||
r_eval.set_coupling(Quadrupolar, (delta, eta))
 | 
			
		||||
r_eval.data(temperature, noisy)
 | 
			
		||||
r_eval.set_data(temperature, noisy)
 | 
			
		||||
r_eval.omega = omega
 | 
			
		||||
 | 
			
		||||
# Find a T1 minumum
 | 
			
		||||
t1_min_data, _ = r_eval.calculate_t1_min()  # second argument is None
 | 
			
		||||
t1_min_inter, line = r_eval.calculate_t1_min(interpolate=1, trange=(160, 195), use_log=True)
 | 
			
		||||
 | 
			
		||||
fig, ax = plt.subplots()
 | 
			
		||||
ax.semilogy(1000/t1_min_data[0], t1_min_data[1], 'rx', label='Data minimum')
 | 
			
		||||
ax.semilogy(1000/t1_min_inter[0], t1_min_inter[1], 'r+', label='Parabola')
 | 
			
		||||
ax.semilogy(1000/line[0], line[1])
 | 
			
		||||
ax_min = plt.figure().add_subplot()
 | 
			
		||||
ax_min.semilogy(inv_temp, noisy, 'o', label='Data')
 | 
			
		||||
ax_min.semilogy(1000/line[0], line[1], '--')
 | 
			
		||||
ax_min.semilogy(1000/t1_min_data[0], t1_min_data[1], 'C2X',label='Data minimum')
 | 
			
		||||
ax_min.semilogy(1000/t1_min_inter[0], t1_min_inter[1], 'C3P',label='Parabola')
 | 
			
		||||
ax_min.set_xlim(4.5, 7)
 | 
			
		||||
ax_min.set_ylim(1e-3, 1e-1)
 | 
			
		||||
ax_min.legend()
 | 
			
		||||
 | 
			
		||||
# Vary the first (and for Cole-Davidson, only) parameter of the spectral density
 | 
			
		||||
found_gamma, found_height = r_eval.get_increase(t1_min_inter[1], idx=0, mode='distribution')
 | 
			
		||||
print(found_gamma)
 | 
			
		||||
 | 
			
		||||
plt.axhline(found_height)
 | 
			
		||||
print(f'Minimum at {found_height} for {found_gamma}; input is {gamma_cd}')
 | 
			
		||||
plt.show()
 | 
			
		||||
 | 
			
		||||
#%%
 | 
			
		||||
# Now we found temperature and height of the minimum we can calculate the correlation time
 | 
			
		||||
##################################################################################
 | 
			
		||||
# Calculation of correlation times uses previously parameter for spectral density
 | 
			
		||||
# and prefactor
 | 
			
		||||
 | 
			
		||||
plt.semilogy(1000/temperature, tau)
 | 
			
		||||
tau_from_t1, opts = r_eval.correlation_from_t1()
 | 
			
		||||
print(opts)
 | 
			
		||||
plt.semilogy(1000/tau_from_t1[:, 0], tau_from_t1[:, 1], 'o')
 | 
			
		||||
tau_from_t1, opts = r_eval.correlation_from_t1(mode='mean')
 | 
			
		||||
print(f'Used options: {opts}')
 | 
			
		||||
 | 
			
		||||
ax_tau = plt.figure().add_subplot()
 | 
			
		||||
ax_tau.semilogy(inv_temp, tau*gamma_cd, label='Original input')
 | 
			
		||||
ax_tau.semilogy(1000/tau_from_t1[:, 0], tau_from_t1[:, 1], 'o', label='Calculated')
 | 
			
		||||
ax_tau.legend()
 | 
			
		||||
plt.show()
 | 
			
		||||
 
 | 
			
		||||
@@ -1,179 +0,0 @@
 | 
			
		||||
:orphan:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. _sphx_glr_gallery:
 | 
			
		||||
 | 
			
		||||
.. examples-index:
 | 
			
		||||
 | 
			
		||||
.. _gallery:
 | 
			
		||||
 | 
			
		||||
========
 | 
			
		||||
Examples
 | 
			
		||||
========
 | 
			
		||||
 | 
			
		||||
This page contains example plots. Click on any image to see the full image and source code.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-clear"></div>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. _sphx_glr_gallery_distribution:
 | 
			
		||||
 | 
			
		||||
 .. _distribution_examples:
 | 
			
		||||
 | 
			
		||||
.. _distribution-examples-index:
 | 
			
		||||
 | 
			
		||||
Distribution of correlation times
 | 
			
		||||
=================================
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-thumbcontainer" tooltip="Example for KWW distributions">
 | 
			
		||||
 | 
			
		||||
.. only:: html
 | 
			
		||||
 | 
			
		||||
 .. figure:: /gallery/distribution/images/thumb/sphx_glr_plot_KWW_thumb.png
 | 
			
		||||
     :alt: Kohlrausch-Williams-Watts
 | 
			
		||||
 | 
			
		||||
     :ref:`sphx_glr_gallery_distribution_plot_KWW.py`
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    </div>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. toctree::
 | 
			
		||||
   :hidden:
 | 
			
		||||
 | 
			
		||||
   /gallery/distribution/plot_KWW
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-thumbcontainer" tooltip="Example for Cole-Cole distributions">
 | 
			
		||||
 | 
			
		||||
.. only:: html
 | 
			
		||||
 | 
			
		||||
 .. figure:: /gallery/distribution/images/thumb/sphx_glr_plot_ColeCole_thumb.png
 | 
			
		||||
     :alt: Cole-Cole
 | 
			
		||||
 | 
			
		||||
     :ref:`sphx_glr_gallery_distribution_plot_ColeCole.py`
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    </div>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. toctree::
 | 
			
		||||
   :hidden:
 | 
			
		||||
 | 
			
		||||
   /gallery/distribution/plot_ColeCole
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-thumbcontainer" tooltip="Example for Log-Gaussian distributions">
 | 
			
		||||
 | 
			
		||||
.. only:: html
 | 
			
		||||
 | 
			
		||||
 .. figure:: /gallery/distribution/images/thumb/sphx_glr_plot_LogGaussian_thumb.png
 | 
			
		||||
     :alt: Log-Gaussian
 | 
			
		||||
 | 
			
		||||
     :ref:`sphx_glr_gallery_distribution_plot_LogGaussian.py`
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    </div>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. toctree::
 | 
			
		||||
   :hidden:
 | 
			
		||||
 | 
			
		||||
   /gallery/distribution/plot_LogGaussian
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-thumbcontainer" tooltip="Example for Cole-Davidson distributions">
 | 
			
		||||
 | 
			
		||||
.. only:: html
 | 
			
		||||
 | 
			
		||||
 .. figure:: /gallery/distribution/images/thumb/sphx_glr_plot_ColeDavidson_thumb.png
 | 
			
		||||
     :alt: Cole-Davidson
 | 
			
		||||
 | 
			
		||||
     :ref:`sphx_glr_gallery_distribution_plot_ColeDavidson.py`
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    </div>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. toctree::
 | 
			
		||||
   :hidden:
 | 
			
		||||
 | 
			
		||||
   /gallery/distribution/plot_ColeDavidson
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-thumbcontainer" tooltip="Example for Havriliak-Negami distributions">
 | 
			
		||||
 | 
			
		||||
.. only:: html
 | 
			
		||||
 | 
			
		||||
 .. figure:: /gallery/distribution/images/thumb/sphx_glr_plot_HavriliakNegami_thumb.png
 | 
			
		||||
     :alt: Havriliak-Negami
 | 
			
		||||
 | 
			
		||||
     :ref:`sphx_glr_gallery_distribution_plot_HavriliakNegami.py`
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    </div>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. toctree::
 | 
			
		||||
   :hidden:
 | 
			
		||||
 | 
			
		||||
   /gallery/distribution/plot_HavriliakNegami
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-clear"></div>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. _sphx_glr_gallery_nmr:
 | 
			
		||||
 | 
			
		||||
.. _nmr_examples:
 | 
			
		||||
 | 
			
		||||
.. _nmr-examples-index:
 | 
			
		||||
 | 
			
		||||
NMR specifics
 | 
			
		||||
=============
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-thumbcontainer" tooltip="Example for">
 | 
			
		||||
 | 
			
		||||
.. only:: html
 | 
			
		||||
 | 
			
		||||
 .. figure:: /gallery/nmr/images/thumb/sphx_glr_plot_RelaxationEvaluation_thumb.png
 | 
			
		||||
     :alt: Spin-lattice relaxation
 | 
			
		||||
 | 
			
		||||
     :ref:`sphx_glr_gallery_nmr_plot_RelaxationEvaluation.py`
 | 
			
		||||
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    </div>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. toctree::
 | 
			
		||||
   :hidden:
 | 
			
		||||
 | 
			
		||||
   /gallery/nmr/plot_RelaxationEvaluation
 | 
			
		||||
.. raw:: html
 | 
			
		||||
 | 
			
		||||
    <div class="sphx-glr-clear"></div>
 | 
			
		||||
 | 
			
		||||
@@ -1,3 +0,0 @@
 | 
			
		||||
'/autohome/dominik/nmreval/doc/_build/html/index.html', (0, 6969)
 | 
			
		||||
'/autohome/dominik/nmreval/doc/_build/html/_static/documentation_options.js', (7168, 364)
 | 
			
		||||
'/autohome/dominik/nmreval/doc/_build/html/searchindex.js', (7680, 29280)
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							@@ -1,3 +0,0 @@
 | 
			
		||||
'/autohome/dominik/nmreval/doc/_build/html/index.html', (0, 6969)
 | 
			
		||||
'/autohome/dominik/nmreval/doc/_build/html/_static/documentation_options.js', (7168, 364)
 | 
			
		||||
'/autohome/dominik/nmreval/doc/_build/html/searchindex.js', (7680, 29280)
 | 
			
		||||
@@ -485,7 +485,7 @@ class PointContainer(ExperimentContainer):
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if sym_kwargs['symbol'] is None and line_kwargs['style'] is None:
 | 
			
		||||
            if len(self._data) > 1000:
 | 
			
		||||
            if len(self._data) > 500:
 | 
			
		||||
                line_kwargs['style'] = LineStyle.Solid
 | 
			
		||||
                sym_kwargs['symbol'] = SymbolStyle.No
 | 
			
		||||
            else:
 | 
			
		||||
 
 | 
			
		||||
@@ -138,8 +138,6 @@ class ConversionDialog(QtWidgets.QDialog, Ui_Dialog):
 | 
			
		||||
 | 
			
		||||
            src_sets.append((set_id_real, set_id_imag, graph_id, type_idx))
 | 
			
		||||
 | 
			
		||||
        print(src_sets)
 | 
			
		||||
 | 
			
		||||
        self.convertSets.emit(src_sets)
 | 
			
		||||
 | 
			
		||||
        return src_sets
 | 
			
		||||
 
 | 
			
		||||
@@ -124,7 +124,7 @@ class QFitParameterWidget(QtWidgets.QWidget, Ui_FormFit):
 | 
			
		||||
            self.data_parameter[idx].blockSignals(False)
 | 
			
		||||
 | 
			
		||||
    @QtCore.pyqtSlot(str, object)
 | 
			
		||||
    def change_global_choice(self, argname, value):
 | 
			
		||||
    def change_global_choice(self, _, value):
 | 
			
		||||
        idx = self.global_parameter.index(self.sender())
 | 
			
		||||
        self.glob_values[idx] = value
 | 
			
		||||
        if self.data_values[self.comboBox.currentData()][idx] is None:
 | 
			
		||||
@@ -242,6 +242,8 @@ class QFitParameterWidget(QtWidgets.QWidget, Ui_FormFit):
 | 
			
		||||
                else:
 | 
			
		||||
                    if p_i is None:
 | 
			
		||||
                        kw_p.update(g.value)
 | 
			
		||||
                    elif isinstance(p_i, dict):
 | 
			
		||||
                        kw_p.update(p_i)
 | 
			
		||||
                    else:
 | 
			
		||||
                        kw_p[g.argname] = p_i
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -64,7 +64,7 @@ class QGraphWindow(QtWidgets.QGraphicsView, Ui_GraphWindow):
 | 
			
		||||
 | 
			
		||||
        # reconnect "Export..." in context menu to our function
 | 
			
		||||
        self.scene.contextMenu[0].disconnect()
 | 
			
		||||
        self.scene.contextMenu[0].triggered.connect(self.export)
 | 
			
		||||
        self.scene.contextMenu[0].triggered.connect(self.export_dialog)
 | 
			
		||||
 | 
			
		||||
    def _init_gui(self):
 | 
			
		||||
        self.setWindowTitle('Graph ' + str(next(QGraphWindow.counter)))
 | 
			
		||||
@@ -515,7 +515,7 @@ class QGraphWindow(QtWidgets.QGraphicsView, Ui_GraphWindow):
 | 
			
		||||
                    (item in self.graphic.items() or other_item in self.graphic.items()):
 | 
			
		||||
                self.legend.addItem(item, convert(item.opts.get('name', ''), old='tex', new='html'))
 | 
			
		||||
 | 
			
		||||
    def export(self):
 | 
			
		||||
    def export_dialog(self):
 | 
			
		||||
        filters = 'All files (*.*);;AGR (*.agr);;SVG (*.svg);;PDF (*.pdf)'
 | 
			
		||||
        for imgformat in QtGui.QImageWriter.supportedImageFormats():
 | 
			
		||||
            str_format = imgformat.data().decode('utf-8')
 | 
			
		||||
@@ -524,6 +524,9 @@ class QGraphWindow(QtWidgets.QGraphicsView, Ui_GraphWindow):
 | 
			
		||||
        outfile, _ = QtWidgets.QFileDialog.getSaveFileName(self, caption='Export graphic', filter=filters,
 | 
			
		||||
                                                           options=QtWidgets.QFileDialog.DontConfirmOverwrite)
 | 
			
		||||
        if outfile:
 | 
			
		||||
            self.export(outfile)
 | 
			
		||||
 | 
			
		||||
    def export(self, outfile: str):
 | 
			
		||||
            _, suffix = os.path.splitext(outfile)
 | 
			
		||||
            if suffix == '':
 | 
			
		||||
                QtWidgets.QMessageBox.warning(self, 'No file extension',
 | 
			
		||||
@@ -566,7 +569,6 @@ class QGraphWindow(QtWidgets.QGraphicsView, Ui_GraphWindow):
 | 
			
		||||
                    from ..io.exporters import PDFPrintExporter
 | 
			
		||||
                    PDFPrintExporter(self.graphic).export(outfile)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
                elif suffix == '.svg':
 | 
			
		||||
                    from pyqtgraph.exporters import SVGExporter
 | 
			
		||||
                    SVGExporter(self.scene).export(outfile)
 | 
			
		||||
@@ -591,8 +593,6 @@ class QGraphWindow(QtWidgets.QGraphicsView, Ui_GraphWindow):
 | 
			
		||||
            if item_dic:
 | 
			
		||||
                dic['items'].append(item_dic)
 | 
			
		||||
 | 
			
		||||
        print(dic)
 | 
			
		||||
 | 
			
		||||
        return dic
 | 
			
		||||
 | 
			
		||||
    def get_state(self) -> dict:
 | 
			
		||||
 
 | 
			
		||||
@@ -1,3 +1,7 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import pathlib
 | 
			
		||||
 | 
			
		||||
from ..Qt import QtWidgets, QtCore
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -74,15 +78,45 @@ class SaveDirectoryDialog(_FileDialog):
 | 
			
		||||
        self.setOption(QtWidgets.QFileDialog.DontConfirmOverwrite, False)
 | 
			
		||||
        self.setAcceptMode(QtWidgets.QFileDialog.AcceptSave)
 | 
			
		||||
 | 
			
		||||
        lay = self.layout()
 | 
			
		||||
 | 
			
		||||
        self.label = QtWidgets.QLabel(self)
 | 
			
		||||
        self.label.setTextFormat(QtCore.Qt.RichText)
 | 
			
		||||
        self.label.setText('Use <b><label></b> as placeholder in filename. (e.g. <i>t1_<label>.dat</i>)')
 | 
			
		||||
        self.layout().addWidget(self.label, self.layout().rowCount(), 0, 1, self.layout().columnCount())
 | 
			
		||||
        lay.addWidget(self.label, lay.rowCount(), 0, 1, lay.columnCount())
 | 
			
		||||
 | 
			
		||||
        line = QtWidgets.QFrame(self)
 | 
			
		||||
        line.setFrameShape(line.HLine)
 | 
			
		||||
        line.setFrameShadow(line.Sunken)
 | 
			
		||||
        lay.addWidget(line, lay.rowCount(), 0, 1, lay.columnCount())
 | 
			
		||||
 | 
			
		||||
        h_layout = QtWidgets.QHBoxLayout()
 | 
			
		||||
        h_layout.setContentsMargins(0, 0, 0, 0)
 | 
			
		||||
        h_layout.setSpacing(3)
 | 
			
		||||
 | 
			
		||||
        self.checkBox = QtWidgets.QCheckBox(self)
 | 
			
		||||
        self.checkBox.setChecked(True)
 | 
			
		||||
        self.checkBox.setText('Replace spaces with underscore')
 | 
			
		||||
        self.layout().addWidget(self.checkBox, self.layout().rowCount(), 0, 1, self.layout().columnCount())
 | 
			
		||||
        self.checkBox.setText('Replace spaces with _')
 | 
			
		||||
        h_layout.addWidget(self.checkBox)
 | 
			
		||||
 | 
			
		||||
        self.agr_cb = QtWidgets.QCheckBox(self)
 | 
			
		||||
        self.agr_cb.setChecked(True)
 | 
			
		||||
        self.agr_cb.setText('Save graph as Grace file')
 | 
			
		||||
        h_layout.addWidget(self.agr_cb)
 | 
			
		||||
 | 
			
		||||
        self.fit_cb = QtWidgets.QCheckBox(self)
 | 
			
		||||
        self.fit_cb.setChecked(True)
 | 
			
		||||
        self.fit_cb.setText('Save fit parameter')
 | 
			
		||||
        h_layout.addWidget(self.fit_cb)
 | 
			
		||||
 | 
			
		||||
        lay.addLayout(h_layout, lay.rowCount(), 0, 1, lay.columnCount())
 | 
			
		||||
 | 
			
		||||
        self.setWindowTitle('Save')
 | 
			
		||||
        self.setNameFilters(['All files (*.*)', 'Session file (*.nmr)', 'Text file (*.dat)', 'HDF file (*.h5)', 'Grace files (*.agr)'])
 | 
			
		||||
        self.setNameFilters(['All files (*.*)', 'Session file (*.nmr)', 'Text file (*.dat)',
 | 
			
		||||
                             'HDF file (*.h5)', 'Grace files (*.agr)'])
 | 
			
		||||
 | 
			
		||||
    def save_file(self) -> pathlib.Path | None:
 | 
			
		||||
        outfile = self.selectedFiles()
 | 
			
		||||
        if outfile:
 | 
			
		||||
            return pathlib.Path(outfile[0])
 | 
			
		||||
        return
 | 
			
		||||
 
 | 
			
		||||
@@ -193,6 +193,8 @@ class SelectionWidget(QtWidgets.QWidget):
 | 
			
		||||
 | 
			
		||||
    @value.setter
 | 
			
		||||
    def value(self, val):
 | 
			
		||||
        if isinstance(val, dict):
 | 
			
		||||
            val = list(val.values())[0]
 | 
			
		||||
        key = [k for k, v in self.options.items() if v == val][0]
 | 
			
		||||
        self.comboBox.setCurrentIndex(self.comboBox.findText(key))
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -341,7 +341,7 @@ class PlotItem(PlotDataItem):
 | 
			
		||||
 | 
			
		||||
        if opts['symbol'] is None:
 | 
			
		||||
            item_dic['symbol'] = SymbolStyle.No
 | 
			
		||||
            item_dic['symbolcolor'] = Colors.Black
 | 
			
		||||
            item_dic['symbolcolor'] = None
 | 
			
		||||
        else:
 | 
			
		||||
            item_dic['symbol'] = SymbolStyle.from_str(opts['symbol'])
 | 
			
		||||
            item_dic['symbolcolor'] = opts['symbolcolor']
 | 
			
		||||
@@ -354,9 +354,16 @@ class PlotItem(PlotDataItem):
 | 
			
		||||
            item_dic['linewidth'] = pen.widthF()
 | 
			
		||||
        else:
 | 
			
		||||
            item_dic['linestyle'] = LineStyle.No
 | 
			
		||||
            item_dic['linecolor'] = item_dic['symbolcolor']
 | 
			
		||||
            item_dic['linecolor'] = None
 | 
			
		||||
            item_dic['linewidth'] = 0.0
 | 
			
		||||
 | 
			
		||||
        if item_dic['linecolor'] is None and item_dic['symbolcolor'] is None:
 | 
			
		||||
            item_dic['symbolcolor'] = Colors.Black.rgb()
 | 
			
		||||
        elif item_dic['linecolor'] is None:
 | 
			
		||||
            item_dic['linecolor'] = item_dic['symbolcolor']
 | 
			
		||||
        elif item_dic['symbolcolor'] is None:
 | 
			
		||||
            item_dic['symbolcolor'] = item_dic['linecolor']
 | 
			
		||||
 | 
			
		||||
        return item_dic
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,4 +1,5 @@
 | 
			
		||||
import pathlib
 | 
			
		||||
import re
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
from typing import List, Tuple
 | 
			
		||||
 | 
			
		||||
@@ -249,11 +250,20 @@ class NMRMainWindow(QtWidgets.QMainWindow, Ui_BaseWindow):
 | 
			
		||||
 | 
			
		||||
        mode = save_dialog.exec()
 | 
			
		||||
        if mode == QtWidgets.QDialog.Accepted:
 | 
			
		||||
            path = save_dialog.selectedFiles()
 | 
			
		||||
            savefile = save_dialog.save_file()
 | 
			
		||||
            selected_filter = save_dialog.selectedNameFilter()
 | 
			
		||||
 | 
			
		||||
            if path:
 | 
			
		||||
                self.management.save(path[0], selected_filter)
 | 
			
		||||
            if savefile is not None:
 | 
			
		||||
                use_underscore = save_dialog.checkBox.isChecked()
 | 
			
		||||
                self.management.save(savefile, selected_filter, strip_spaces=use_underscore)
 | 
			
		||||
 | 
			
		||||
                param_outfile = re.sub('[_\s-]?<label>[_\s-]?', '', savefile.stem)
 | 
			
		||||
 | 
			
		||||
                if save_dialog.agr_cb.isChecked():
 | 
			
		||||
                    self.current_graph_widget.export(savefile.with_name(param_outfile + '.agr'))
 | 
			
		||||
 | 
			
		||||
                if save_dialog.fit_cb.isChecked():
 | 
			
		||||
                    self.management.save_fit_parameter(savefile.with_name(param_outfile + '.dat'))
 | 
			
		||||
 | 
			
		||||
    @QtCore.pyqtSlot()
 | 
			
		||||
    @QtCore.pyqtSlot(list)
 | 
			
		||||
@@ -266,7 +276,7 @@ class NMRMainWindow(QtWidgets.QMainWindow, Ui_BaseWindow):
 | 
			
		||||
 | 
			
		||||
    @QtCore.pyqtSlot(name='on_actionExportGraphic_triggered')
 | 
			
		||||
    def export_graphic(self):
 | 
			
		||||
        self.current_graph_widget.export()
 | 
			
		||||
        self.current_graph_widget.export_dialog()
 | 
			
		||||
 | 
			
		||||
    @QtCore.pyqtSlot(name='on_actionNew_window_triggered')
 | 
			
		||||
    def new_graph(self):
 | 
			
		||||
@@ -304,7 +314,6 @@ class NMRMainWindow(QtWidgets.QMainWindow, Ui_BaseWindow):
 | 
			
		||||
 | 
			
		||||
    @QtCore.pyqtSlot(str)
 | 
			
		||||
    def remove_graph(self, gid: str):
 | 
			
		||||
        print(gid, self.current_graph_widget)
 | 
			
		||||
        self.datawidget.remove_item(gid)
 | 
			
		||||
        w = None
 | 
			
		||||
        for w in self.area.subWindowList():
 | 
			
		||||
@@ -655,7 +664,6 @@ class NMRMainWindow(QtWidgets.QMainWindow, Ui_BaseWindow):
 | 
			
		||||
 | 
			
		||||
    @QtCore.pyqtSlot(str)
 | 
			
		||||
    def delete_data(self, sid):
 | 
			
		||||
        print('remove', sid)
 | 
			
		||||
        if self.valuewidget.shown_set == sid:
 | 
			
		||||
            self.tabWidget.setCurrentIndex(0)
 | 
			
		||||
 | 
			
		||||
@@ -765,7 +773,8 @@ class NMRMainWindow(QtWidgets.QMainWindow, Ui_BaseWindow):
 | 
			
		||||
 | 
			
		||||
    def _select_fitwidget(self, onoff: bool, block_window: bool):
 | 
			
		||||
        if self.current_graph_widget is not None:
 | 
			
		||||
            print('select', self.current_graph_widget.id)
 | 
			
		||||
            pass
 | 
			
		||||
 | 
			
		||||
        if onoff:
 | 
			
		||||
            if self.management.active_sets:
 | 
			
		||||
                self.fit_dialog.connected_figure = self.management.current_graph
 | 
			
		||||
 
 | 
			
		||||
@@ -1,3 +1,5 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import pathlib
 | 
			
		||||
import re
 | 
			
		||||
import uuid
 | 
			
		||||
@@ -260,7 +262,6 @@ class UpperManagement(QtCore.QObject):
 | 
			
		||||
    @QtCore.pyqtSlot(str)
 | 
			
		||||
    def delete_sets(self, rm_sets: list = None):
 | 
			
		||||
        rm_graphs = []
 | 
			
		||||
        print(rm_sets)
 | 
			
		||||
 | 
			
		||||
        if rm_sets is None:
 | 
			
		||||
            rm_sets = self.graphs[self.current_graph].sets + [self.current_graph]
 | 
			
		||||
@@ -489,9 +490,6 @@ class UpperManagement(QtCore.QObject):
 | 
			
		||||
 | 
			
		||||
            f_id = self.add(fit, color=color, src=k)
 | 
			
		||||
 | 
			
		||||
            if subplots:
 | 
			
		||||
                print('subplots')
 | 
			
		||||
 | 
			
		||||
            f_id_list.append(f_id)
 | 
			
		||||
            data_k.set_fits(f_id)
 | 
			
		||||
            gid = data_k.graph
 | 
			
		||||
@@ -516,7 +514,7 @@ class UpperManagement(QtCore.QObject):
 | 
			
		||||
 | 
			
		||||
            self.newData.emit(p_id_list, graph_id)
 | 
			
		||||
 | 
			
		||||
    def save_fit_parameter(self, fname: str, fit_sets: List[str] = None):
 | 
			
		||||
    def save_fit_parameter(self, fname: str | pathlib.Path, fit_sets: List[str] = None):
 | 
			
		||||
        if fit_sets is None:
 | 
			
		||||
            fit_sets = [s for (s, _) in self.active_sets]
 | 
			
		||||
 | 
			
		||||
@@ -1009,7 +1007,7 @@ class UpperManagement(QtCore.QObject):
 | 
			
		||||
    def append(self, idx: str):
 | 
			
		||||
        self.data[idx].add([0.0, 0.0, 0.0])
 | 
			
		||||
 | 
			
		||||
    def save(self, outpath: str, extension: str, strip_spaces=False):
 | 
			
		||||
    def save(self, outpath: str | pathlib.Path, extension: str, strip_spaces=False):
 | 
			
		||||
        path = pathlib.Path(outpath)
 | 
			
		||||
        suffix = path.suffix
 | 
			
		||||
 | 
			
		||||
@@ -1030,7 +1028,7 @@ class UpperManagement(QtCore.QObject):
 | 
			
		||||
        real_outnames = []
 | 
			
		||||
        for set_id, set_name in self.active_sets:
 | 
			
		||||
            full_name = path.stem
 | 
			
		||||
            if '<label>' in outpath:
 | 
			
		||||
            if '<label>' in full_name:
 | 
			
		||||
                full_name = full_name.replace('<label>', convert(set_name, old='tex', new='str'))
 | 
			
		||||
 | 
			
		||||
            data_i = self.data[set_id]
 | 
			
		||||
 
 | 
			
		||||
@@ -87,7 +87,7 @@ class QT1Widget(QtWidgets.QDialog, Ui_t1dialog):
 | 
			
		||||
        self.lineEdit_3.setText('{:.2f}'.format(x[right_b]))
 | 
			
		||||
        self.lineEdit_3.blockSignals(False)
 | 
			
		||||
 | 
			
		||||
        self.t1calculator.data(x, y)
 | 
			
		||||
        self.t1calculator.set_data(x, y)
 | 
			
		||||
 | 
			
		||||
        self.determine_minimum(self.interpol_combobox.currentIndex())
 | 
			
		||||
        self.name = name
 | 
			
		||||
@@ -159,7 +159,6 @@ class QT1Widget(QtWidgets.QDialog, Ui_t1dialog):
 | 
			
		||||
                _temp.valueChanged.connect(self.update_coupling_parameter)
 | 
			
		||||
                _temp.stateChanged.connect(self.update_coupling_parameter)
 | 
			
		||||
                self.cp_parameter.append(_temp)
 | 
			
		||||
                print(self.cp_parameter)
 | 
			
		||||
 | 
			
		||||
        if self.coupling[idx].choice is not None:
 | 
			
		||||
            for (name, kw_name, opts) in self.coupling[idx].choice:
 | 
			
		||||
 
 | 
			
		||||
@@ -112,8 +112,7 @@ class BDSReader:
 | 
			
		||||
                warnings.warn('Number of set temperatures does not match number of data points')
 | 
			
		||||
 | 
			
		||||
            _y = np.array(_y).reshape((actual_temps_length, freq_values_length, 9))
 | 
			
		||||
            print(_y.shape)
 | 
			
		||||
            print(f.tell())
 | 
			
		||||
 | 
			
		||||
            # last 3 entries are zero, save only 6
 | 
			
		||||
            # Z.imag*omega), Z.real, meas.time, meas. temp., ac voltage, dc voltage
 | 
			
		||||
            self.y = np.transpose(_y[:, :, :6], (2, 0, 1))
 | 
			
		||||
 
 | 
			
		||||
@@ -450,7 +450,6 @@ class GraceGraph(GraceProperties):
 | 
			
		||||
        self.idx = idx
 | 
			
		||||
 | 
			
		||||
    def set_limits(self, x=None, y=None):
 | 
			
		||||
        print(x, y)
 | 
			
		||||
        for i, line in enumerate(self):
 | 
			
		||||
            m = self._RE_ENTRY.match(line)
 | 
			
		||||
            if m and m.group('key') == 'world':
 | 
			
		||||
@@ -702,10 +701,3 @@ def _convert_to_str(value):
 | 
			
		||||
        return ', '.join(map(str, value))
 | 
			
		||||
    else:
 | 
			
		||||
        return str(value)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    agr = GraceEditor('/autohome/dominik/nmreval/testdata/02_relax_2.agr')
 | 
			
		||||
    import pprint
 | 
			
		||||
    pprint.pprint(agr.graphs)
 | 
			
		||||
    agr.graphs[0].set_property(title='"asdasdasd"')
 | 
			
		||||
 
 | 
			
		||||
@@ -4,9 +4,10 @@ Relaxation
 | 
			
		||||
 | 
			
		||||
Classes to calculate spin-lattice and spin-spin relaxation, as well as to evaluate T1 data and calculate correlation times
 | 
			
		||||
"""
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
from typing import Any, Optional, Tuple, Type, Union
 | 
			
		||||
from typing import Any, Tuple, Type
 | 
			
		||||
from warnings import warn
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
@@ -42,8 +43,8 @@ class Relaxation:
 | 
			
		||||
        else:
 | 
			
		||||
            return super().__repr__()
 | 
			
		||||
 | 
			
		||||
    def set_coupling(self, coupling: Union[float, Type[Coupling]],
 | 
			
		||||
                     parameter: Union[tuple, list] = None, keywords: dict = None):
 | 
			
		||||
    def set_coupling(self, coupling: float | Type[Coupling],
 | 
			
		||||
                     parameter: tuple | list = None, keywords: dict = None):
 | 
			
		||||
 | 
			
		||||
        if parameter is not None:
 | 
			
		||||
            self.coup_parameter = parameter
 | 
			
		||||
@@ -61,7 +62,7 @@ class Relaxation:
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError(f'`coupling` is not number or of type `Coupling`, found {coupling!r}')
 | 
			
		||||
 | 
			
		||||
    def set_distribution(self, dist: Type[Distribution], parameter: Union[tuple, list] = None, keywords: dict = None):
 | 
			
		||||
    def set_distribution(self, dist: Type[Distribution], parameter: tuple | list = None, keywords: dict = None):
 | 
			
		||||
        self.distribution = dist
 | 
			
		||||
 | 
			
		||||
        if parameter is not None:
 | 
			
		||||
@@ -71,7 +72,7 @@ class Relaxation:
 | 
			
		||||
            self._dist_kw = keywords
 | 
			
		||||
 | 
			
		||||
    def t1(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any,
 | 
			
		||||
           mode: str = 'bpp', **kwargs) -> Union[np.ndarray, float]:
 | 
			
		||||
           mode: str = 'bpp', **kwargs) -> np.ndarray | float:
 | 
			
		||||
        r"""
 | 
			
		||||
        Convenience function
 | 
			
		||||
 | 
			
		||||
@@ -109,7 +110,7 @@ class Relaxation:
 | 
			
		||||
 | 
			
		||||
    def t1_dipolar(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any, inverse: bool = True,
 | 
			
		||||
                   prefactor: float = None, omega_coup: ArrayLike = None,
 | 
			
		||||
                   gamma_coup: str = None, gamma_obs: str = None) -> Union[np.ndarray, float]:
 | 
			
		||||
                   gamma_coup: str = None, gamma_obs: str = None) -> np.ndarray | float:
 | 
			
		||||
        r"""Calculate T1 under heteronuclear dipolar coupling.
 | 
			
		||||
 | 
			
		||||
        .. math::
 | 
			
		||||
@@ -162,7 +163,7 @@ class Relaxation:
 | 
			
		||||
            return rate
 | 
			
		||||
 | 
			
		||||
    def t1_bpp(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any,
 | 
			
		||||
               inverse: bool = True, prefactor: float = None) -> Union[np.ndarray, float]:
 | 
			
		||||
               inverse: bool = True, prefactor: float = None) -> np.ndarray | float:
 | 
			
		||||
        r"""Calculate T1 under homonuclear dipolar coupling or quadrupolar coupling.
 | 
			
		||||
 | 
			
		||||
        .. math::
 | 
			
		||||
@@ -197,7 +198,7 @@ class Relaxation:
 | 
			
		||||
            return rate
 | 
			
		||||
 | 
			
		||||
    def t1_csa(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any,
 | 
			
		||||
               inverse: bool = True, prefactor: float = None) -> Union[np.ndarray, float]:
 | 
			
		||||
               inverse: bool = True, prefactor: float = None) -> np.ndarray | float:
 | 
			
		||||
        r"""Calculate T1 under chemical shift anisotropy.
 | 
			
		||||
 | 
			
		||||
        .. math::
 | 
			
		||||
@@ -234,7 +235,7 @@ class Relaxation:
 | 
			
		||||
            return rate
 | 
			
		||||
 | 
			
		||||
    def t1q(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any,
 | 
			
		||||
            inverse: bool = True, prefactor: float = None) -> Union[np.ndarray, float]:
 | 
			
		||||
            inverse: bool = True, prefactor: float = None) -> np.ndarray | float:
 | 
			
		||||
        r"""Calculate T1q for homonuclear dipolar coupling or quadrupolar coupling (I=1).
 | 
			
		||||
 | 
			
		||||
        .. math::
 | 
			
		||||
@@ -305,7 +306,7 @@ class Relaxation:
 | 
			
		||||
            return rate
 | 
			
		||||
 | 
			
		||||
    def t2(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any,
 | 
			
		||||
           mode: str = 'bpp', **kwargs) -> Union[np.ndarray, float]:
 | 
			
		||||
           mode: str = 'bpp', **kwargs) -> np.ndarray | float:
 | 
			
		||||
        r"""
 | 
			
		||||
        Convenience function
 | 
			
		||||
 | 
			
		||||
@@ -342,7 +343,7 @@ class Relaxation:
 | 
			
		||||
            return self.t2_csa(omega, tau, *specdens_args, **kwargs)
 | 
			
		||||
 | 
			
		||||
    def t2_bpp(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any,
 | 
			
		||||
               inverse: bool = True, prefactor: float = None) -> Union[np.ndarray, float]:
 | 
			
		||||
               inverse: bool = True, prefactor: float = None) -> np.ndarray | float:
 | 
			
		||||
        r"""Calculate T2 under homonuclear dipolar coupling or quadrupolar coupling.
 | 
			
		||||
 | 
			
		||||
        .. math::
 | 
			
		||||
@@ -379,7 +380,7 @@ class Relaxation:
 | 
			
		||||
 | 
			
		||||
    def t2_dipolar(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any,
 | 
			
		||||
                   inverse: bool = True, prefactor: float = None, omega_coup: ArrayLike = None,
 | 
			
		||||
                   gamma_coup: str = None, gamma_obs: str = None) -> Union[np.ndarray, float]:
 | 
			
		||||
                   gamma_coup: str = None, gamma_obs: str = None) -> np.ndarray | float:
 | 
			
		||||
        r"""Calculate T2 under heteronuclear dipolar coupling.
 | 
			
		||||
 | 
			
		||||
        .. math::
 | 
			
		||||
@@ -435,7 +436,7 @@ class Relaxation:
 | 
			
		||||
            return rate
 | 
			
		||||
 | 
			
		||||
    def t2_csa(self, omega: ArrayLike, tau: ArrayLike, *specdens_args: Any,
 | 
			
		||||
               inverse: bool = True, prefactor: float = None) -> Union[np.ndarray, float]:
 | 
			
		||||
               inverse: bool = True, prefactor: float = None) -> np.ndarray | float:
 | 
			
		||||
        r"""Calculate T1 under chemical shift anisotropy.
 | 
			
		||||
 | 
			
		||||
        .. math::
 | 
			
		||||
@@ -471,7 +472,7 @@ class Relaxation:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RelaxationEvaluation(Relaxation):
 | 
			
		||||
    def __init__(self, distribution=None):
 | 
			
		||||
    def __init__(self, distribution: Type[Distribution] = None):
 | 
			
		||||
        super().__init__(distribution=distribution)
 | 
			
		||||
        self.t1min = (np.nan, np.nan)
 | 
			
		||||
        self._interpolate = None
 | 
			
		||||
@@ -481,7 +482,15 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
        self.x = None
 | 
			
		||||
        self.y = None
 | 
			
		||||
 | 
			
		||||
    def data(self, temp, t1):
 | 
			
		||||
    def set_data(self, temp: ArrayLike, t1: ArrayLike):
 | 
			
		||||
        """
 | 
			
		||||
        Set data for evaluation.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            temp (array-like): Temperature values
 | 
			
		||||
            t1 (array-like): T1 values
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        temp = np.asanyarray(temp)
 | 
			
		||||
        t1 = np.asanyarray(t1)
 | 
			
		||||
        sortidx = temp.argsort()
 | 
			
		||||
@@ -490,10 +499,11 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
        self.calculate_t1_min()
 | 
			
		||||
 | 
			
		||||
    def get_increase(self, height: float = None, idx: int = 0, mode: str = None, omega: float = None,
 | 
			
		||||
                     dist_parameter: Union[tuple, list] = None, prefactor: Union[tuple, list, float] = None,
 | 
			
		||||
                     dist_parameter: tuple | list = None, prefactor: tuple | list | float = None,
 | 
			
		||||
                     coupling_kwargs: dict = None):
 | 
			
		||||
        """
 | 
			
		||||
        Determine a single parameter from a T1 minimum
 | 
			
		||||
        Determine a single parameter from a T1 minimum.
 | 
			
		||||
        It replaces the previously set value.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            height (float, optional): Height of T1 minimum
 | 
			
		||||
@@ -501,14 +511,16 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
            idx (int): Default is 0.
 | 
			
		||||
            omega (float, optional): Larmor frequency (in 1/s)
 | 
			
		||||
            dist_parameter (tuple, optional):
 | 
			
		||||
            prefactor (tuple, float, optional):
 | 
			
		||||
            coupling_kwargs (dict, optional):
 | 
			
		||||
            prefactor (tuple, float, optional): Prefactor for
 | 
			
		||||
            coupling_kwargs (dict, optional): Keyword arguments for coupling, replacing old values
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            A tuple of the value of varied parameter, or nan if nothing was varied
 | 
			
		||||
            and the minimum height calculated for given parameters.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        stretching = mini = np.nan
 | 
			
		||||
        stretching = minimon = np.nan
 | 
			
		||||
        if height is None:
 | 
			
		||||
            height = self.t1min[1]
 | 
			
		||||
 | 
			
		||||
@@ -605,6 +617,7 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
 | 
			
		||||
            else:
 | 
			
		||||
                stretching = t1_no_coup / height
 | 
			
		||||
                prefactor = stretching
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError('Use `distribution` or `coupling` to set parameter')
 | 
			
		||||
@@ -617,13 +630,30 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
                self.prefactor = self.coupling.relax(*self.coup_parameter, **self.coup_kw)
 | 
			
		||||
            else:
 | 
			
		||||
                self.prefactor = prefactor
 | 
			
		||||
            mini = np.min(self.t1(omega, np.logspace(*tau_lims, num=1001), *self.dist_parameter,
 | 
			
		||||
                                  prefactor=self.prefactor))
 | 
			
		||||
            minimon = np.min(self.t1(omega, np.logspace(*tau_lims, num=1001), *self.dist_parameter,
 | 
			
		||||
                                     prefactor=self.prefactor))
 | 
			
		||||
 | 
			
		||||
        return stretching, mini
 | 
			
		||||
        return stretching, minimon
 | 
			
		||||
 | 
			
		||||
    def calculate_t1_min(self, interpolate: int = None, trange: Tuple[float, float] = None, use_log: bool = False) -> \
 | 
			
		||||
            Tuple[Tuple[float, float], Optional[Tuple[np.ndarray, np.ndarray]]]:
 | 
			
		||||
            Tuple[Tuple[float, float], Tuple[np.ndarray, np.ndarray] | None]:
 | 
			
		||||
        """
 | 
			
		||||
        Determine a minimum position for given T1 data
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            interpolate (int, optional):
 | 
			
		||||
              *  0 or None: No interpolation, minimum is data minimum
 | 
			
		||||
              *  1: Interpolation with a parabola
 | 
			
		||||
              *  2: Interpolation with a cubic spline
 | 
			
		||||
              *  3: Interpolation with Akima spline (less wiggly than cubic)
 | 
			
		||||
            trange (tuple): Range (left border, range border) of interpolation in K.
 | 
			
		||||
                Interpolation without a given range uses two points left and right of minimum value.
 | 
			
		||||
            use_log (bool):  Default is `True`.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            The minimum position (`T_min`, `T1_min`)
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        min_index = np.argmin(self.y)
 | 
			
		||||
        t1_min = (self.x[min_index], self.y[min_index])
 | 
			
		||||
        parabola = None
 | 
			
		||||
@@ -674,9 +704,25 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
        return t1_min, parabola
 | 
			
		||||
 | 
			
		||||
    def correlation_from_t1(self, mode: str = 'raw', interpolate: bool = False, omega: float = None,
 | 
			
		||||
                            dist_parameter: Union[float, list, tuple] = None, prefactor: Union[float, tuple, list] = None,
 | 
			
		||||
                            dist_parameter: list | tuple = None, prefactor: float = None,
 | 
			
		||||
                            coupling_param: list = None, coupling_kwargs: dict = None) -> Tuple[np.ndarray, dict]:
 | 
			
		||||
        """
 | 
			
		||||
        Calculate correlation times from set T1 data.
 | 
			
		||||
        Optional arguments overwrite previousliy set parameter.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            mode (str, {`raw`, `mean`, `logmean`, `max`}): Type of correlation time. Default is `raw`.
 | 
			
		||||
            interpolate (bool): If ``True`` and T1 minimum was determined by nterpolation,
 | 
			
		||||
                T1 on interpolated line instead of measured value is used. Default is `False`.
 | 
			
		||||
            omega (float, optional): Larmor frequency (in 1/s)
 | 
			
		||||
            dist_parameter (list, optional): List of parameter of spectral density
 | 
			
		||||
            prefactor (float, optional): Prefactor of T1 calculation, will
 | 
			
		||||
            coupling_param (list, optional): Parameter for coupling constant, ignored if `prefactor`is given.
 | 
			
		||||
            coupling_kwargs (dict, optional): Keyword arguments for coupling constant, ignored if `prefactor`is given.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        if self.x is None:
 | 
			
		||||
            raise ValueError('Temperature is not set')
 | 
			
		||||
 | 
			
		||||
@@ -694,6 +740,7 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
 | 
			
		||||
            if coupling_param is None:
 | 
			
		||||
                prefactor = self.prefactor
 | 
			
		||||
                coupling_param = self.coup_parameter
 | 
			
		||||
            else:
 | 
			
		||||
                prefactor = self.coupling.relax(*coupling_param, **coupling_kwargs)
 | 
			
		||||
 | 
			
		||||
@@ -711,7 +758,7 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
        base_taus = np.logspace(-10, -7, num=1001)
 | 
			
		||||
        min_tau = base_taus[np.argmin(self.t1(omega, base_taus, *dist_parameter, prefactor=prefactor))]
 | 
			
		||||
 | 
			
		||||
        taus = np.geomspace(min_tau, 100. * min_tau, num=501)
 | 
			
		||||
        taus = np.geomspace(min_tau, 100. * min_tau, num=1001)
 | 
			
		||||
        current_t1 = self.t1(omega, taus, *dist_parameter, prefactor=prefactor)
 | 
			
		||||
 | 
			
		||||
        for i in range(1, len(slow_t1) + 1):
 | 
			
		||||
@@ -722,7 +769,7 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
                    t1_i = self._interpolate(slow_temp[-i])
 | 
			
		||||
 | 
			
		||||
            if np.min(current_t1) > t1_i:
 | 
			
		||||
                warn('Correlation time could not be calculated')
 | 
			
		||||
                warn(f'Value {t1_i} below set minimum, wonky correlation time')
 | 
			
		||||
                correlation_times[offset - i] = taus[0]
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
@@ -738,7 +785,7 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
        fast_t1 = self.y[fast_idx]
 | 
			
		||||
        fast_temp = self.x[fast_idx]
 | 
			
		||||
 | 
			
		||||
        taus = np.geomspace(0.01 * min_tau, min_tau, num=501)
 | 
			
		||||
        taus = np.geomspace(0.01 * min_tau, min_tau, num=1001)
 | 
			
		||||
        current_t1 = self.t1(omega, taus, *dist_parameter, prefactor=prefactor)
 | 
			
		||||
 | 
			
		||||
        for i in range(len(fast_t1)):
 | 
			
		||||
@@ -750,7 +797,7 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
 | 
			
		||||
            if current_t1[-1] > t1_i:
 | 
			
		||||
                correlation_times[offset + i] = taus[-1]
 | 
			
		||||
                warn(f'Correlation time for {correlation_times[offset + i]} could not be calculated')
 | 
			
		||||
                warn(f'Value {t1_i} below set minimum, wonky correlation time')
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            cross_idx = np.where(np.diff(np.sign(current_t1 - t1_i)))[0]
 | 
			
		||||
@@ -763,11 +810,10 @@ class RelaxationEvaluation(Relaxation):
 | 
			
		||||
            correlation_times[offset + i] = (taus[cross_idx + 1] * lamb + (1 - lamb) * taus[cross_idx])[0]
 | 
			
		||||
 | 
			
		||||
        opts = {'distribution': (self.distribution.name, dist_parameter),
 | 
			
		||||
                'frequency': omega / 2 / np.pi}
 | 
			
		||||
                'frequency': omega / 2 / np.pi,
 | 
			
		||||
                'prefactor': self.prefactor}
 | 
			
		||||
        if self.coupling is not None:
 | 
			
		||||
            opts['coupling'] = (self.coupling.name, self.prefactor, coupling_param, coupling_kwargs)
 | 
			
		||||
        else:
 | 
			
		||||
            opts['coupling'] = (self.prefactor,)
 | 
			
		||||
            opts['coupling'] = (self.coupling.name, coupling_param, coupling_kwargs)
 | 
			
		||||
 | 
			
		||||
        return np.c_[self.x, self.distribution.mean_value(correlation_times, *dist_parameter, mode=mode)], opts
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user