forked from IPKM/nmreval
		
	Make FitResults from all fixed parameters; closes #151
This commit is contained in:
		@@ -227,6 +227,8 @@ class FitRoutine(object):
 | 
			
		||||
        if mode is None:
 | 
			
		||||
            mode = self.fitmethod
 | 
			
		||||
 | 
			
		||||
        print('run')
 | 
			
		||||
 | 
			
		||||
        fit_groups, linked_parameter = self.prepare_links()
 | 
			
		||||
        for data_groups in fit_groups:
 | 
			
		||||
            if len(data_groups) == 1 and not self.linked:
 | 
			
		||||
@@ -234,6 +236,8 @@ class FitRoutine(object):
 | 
			
		||||
                # get variable parameter for fitter
 | 
			
		||||
                p0_k, lb_k, ub_k, var_pars_k = self._prep_data(data)
 | 
			
		||||
 | 
			
		||||
                print(p0_k, var_pars_k)
 | 
			
		||||
 | 
			
		||||
                if mode == 'lsq':
 | 
			
		||||
                    self._least_squares_single(data, p0_k, lb_k, ub_k, var_pars_k)
 | 
			
		||||
 | 
			
		||||
@@ -248,6 +252,7 @@ class FitRoutine(object):
 | 
			
		||||
                data_pars, p0, lb, ub, var_pars = self._prep_global(data_groups, linked_parameter)
 | 
			
		||||
 | 
			
		||||
                if mode == 'lsq':
 | 
			
		||||
                    print(data_pars, p0,var_pars)
 | 
			
		||||
                    self._least_squares_global(data_groups, p0, lb, ub, var_pars, data_pars)
 | 
			
		||||
 | 
			
		||||
                elif mode == 'nm':
 | 
			
		||||
@@ -287,8 +292,8 @@ class FitRoutine(object):
 | 
			
		||||
        vals = []
 | 
			
		||||
        var_pars = []
 | 
			
		||||
        for p_k, v_k in parameter.items():
 | 
			
		||||
            vals.append([v_k.scaled_value, v_k.lb / v_k.scale, v_k.ub / v_k.scale])
 | 
			
		||||
            if v_k.var:
 | 
			
		||||
                vals.append([v_k.scaled_value, v_k.lb / v_k.scale, v_k.ub / v_k.scale])
 | 
			
		||||
                var_pars.append(p_k)
 | 
			
		||||
 | 
			
		||||
        pp, lb, ub = zip(*vals)
 | 
			
		||||
@@ -318,10 +323,10 @@ class FitRoutine(object):
 | 
			
		||||
 | 
			
		||||
                actual_pars.append(p_k_used)
 | 
			
		||||
                # parameter is variable and was not found before as shared parameter
 | 
			
		||||
                p0.append(v_k_used.scaled_value)
 | 
			
		||||
                lb.append(v_k_used.lb / v_k_used.scale)
 | 
			
		||||
                ub.append(v_k_used.ub / v_k_used.scale)
 | 
			
		||||
                if v_k_used.var and p_k_used not in var:
 | 
			
		||||
                    p0.append(v_k_used.scaled_value)
 | 
			
		||||
                    lb.append(v_k_used.lb / v_k_used.scale)
 | 
			
		||||
                    ub.append(v_k_used.ub / v_k_used.scale)
 | 
			
		||||
                    var.append(p_k_used)
 | 
			
		||||
 | 
			
		||||
            data_pars.append(actual_pars)
 | 
			
		||||
@@ -472,7 +477,7 @@ class FitRoutine(object):
 | 
			
		||||
                    pass
 | 
			
		||||
 | 
			
		||||
        # reshape the correlation matrices
 | 
			
		||||
        if corr is None:
 | 
			
		||||
        if corr is None or not corr_idx:
 | 
			
		||||
            actual_corr = None
 | 
			
		||||
            actual_pcorr = None
 | 
			
		||||
        else:
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user