2013-07-17 11:00:24 +00:00
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
__author__ = 'markusro'
|
|
|
|
|
2014-04-03 18:56:50 +00:00
|
|
|
from PyQt4.QtGui import QColor
|
2014-04-11 07:29:32 +00:00
|
|
|
from PyQt4.QtCore import QObject,pyqtSignal,QThread,pyqtSlot
|
2014-04-03 18:56:50 +00:00
|
|
|
|
2014-04-07 11:41:39 +00:00
|
|
|
|
|
|
|
import numpy as np
|
2014-04-03 18:56:50 +00:00
|
|
|
from scipy import optimize as opt, odr
|
|
|
|
|
|
|
|
import libyaff
|
|
|
|
|
2013-07-17 11:00:24 +00:00
|
|
|
|
|
|
|
|
|
|
|
def id_to_color(id):
|
2014-04-03 18:56:50 +00:00
|
|
|
colors = [
|
|
|
|
QColor(54,22,115),
|
2014-02-25 13:55:29 +00:00
|
|
|
QColor(160,16,36),
|
|
|
|
QColor(45,142,15),
|
|
|
|
QColor(168,149,17),
|
|
|
|
QColor(36,10,85),
|
|
|
|
QColor(118,8,23),
|
|
|
|
QColor(31,105,7),
|
|
|
|
QColor(124,109,8),
|
|
|
|
]
|
|
|
|
return colors[id % len(colors)]
|
2013-07-17 11:00:24 +00:00
|
|
|
|
|
|
|
|
2014-04-11 07:29:32 +00:00
|
|
|
|
|
|
|
class FitFunctionCreator(QObject):
|
|
|
|
new_data = pyqtSignal(np.ndarray, np.ndarray)
|
|
|
|
|
2014-03-05 15:59:35 +00:00
|
|
|
def __init__(self):
|
2014-04-11 07:29:32 +00:00
|
|
|
super(FitFunctionCreator,self).__init__()
|
2014-03-05 15:59:35 +00:00
|
|
|
self.data = None
|
|
|
|
self.functions = Functions()
|
|
|
|
|
2014-04-11 07:29:32 +00:00
|
|
|
|
2014-03-05 15:59:35 +00:00
|
|
|
def fitfcn(self, p0, x, *funcs):
|
2014-04-11 07:29:32 +00:00
|
|
|
if x.ndim == 2:
|
|
|
|
self.data = np.zeros( x.shape )
|
|
|
|
else:
|
|
|
|
self.data = np.zeros( (2,x.size) )
|
|
|
|
ndx = 0
|
|
|
|
for fn in funcs: # loop over functions and add the results
|
|
|
|
f, num_p = fn.function, fn.param_number
|
|
|
|
p = p0[ndx:ndx + num_p]
|
|
|
|
if x.ndim == 2:
|
|
|
|
x = x[0]
|
|
|
|
result = f(p, x)
|
|
|
|
self.data += result # fit functions take only 1-dim x
|
|
|
|
ndx += num_p
|
|
|
|
self.new_data.emit(x, self.data)
|
|
|
|
return self.data
|
|
|
|
|
2014-04-14 13:47:16 +00:00
|
|
|
def fitfcn_imag(self, p0, x, *funcs):
|
2014-03-05 17:30:00 +00:00
|
|
|
if x.ndim == 2:
|
2014-04-07 11:41:39 +00:00
|
|
|
self.data = np.zeros( x.shape )
|
2014-03-05 17:30:00 +00:00
|
|
|
else:
|
2014-04-07 11:41:39 +00:00
|
|
|
self.data = np.zeros( (2,x.size) )
|
2014-03-05 15:59:35 +00:00
|
|
|
ndx = 0
|
2014-04-03 18:56:50 +00:00
|
|
|
for fn in funcs: # loop over functions and add the results
|
2014-04-14 13:47:16 +00:00
|
|
|
f, num_p = fn.function, fn.param_number
|
2014-03-05 17:30:00 +00:00
|
|
|
p = p0[ndx:ndx + num_p]
|
|
|
|
if x.ndim == 2:
|
|
|
|
x = x[0]
|
2014-04-03 18:56:50 +00:00
|
|
|
result = f(p, x)
|
|
|
|
self.data += result # fit functions take only 1-dim x
|
2014-03-05 15:59:35 +00:00
|
|
|
ndx += num_p
|
2014-04-11 07:29:32 +00:00
|
|
|
self.new_data.emit(x, self.data)
|
2014-04-14 13:47:16 +00:00
|
|
|
return self.data[1]
|
2014-03-05 15:59:35 +00:00
|
|
|
|
2014-04-07 11:41:39 +00:00
|
|
|
|
|
|
|
class FitRoutine(QObject):
|
|
|
|
finished_fit = pyqtSignal()
|
2014-04-11 07:29:32 +00:00
|
|
|
data_ready = pyqtSignal(np.ndarray, np.ndarray)
|
2014-04-07 11:41:39 +00:00
|
|
|
def __init__(self):
|
|
|
|
super(FitRoutine,self).__init__()
|
|
|
|
self.f = FitFunctionCreator()
|
2014-04-11 07:29:32 +00:00
|
|
|
self.f.new_data.connect(self.data_ready.emit)
|
2014-04-07 11:41:39 +00:00
|
|
|
self._fitter = self.fit_odr_cmplx
|
|
|
|
self._odr_fit = None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def fitter(self):
|
|
|
|
return self._fitter
|
|
|
|
|
|
|
|
@fitter.setter
|
2014-04-14 13:47:16 +00:00
|
|
|
def fitter(self, f):
|
2014-04-07 11:41:39 +00:00
|
|
|
self._fitter = f
|
|
|
|
|
|
|
|
def fit_odr_cmplx(self, x, y, p0, fixed, fcns):
|
|
|
|
#if x.ndim < 2:
|
|
|
|
# x = N.resize(x, (2,x.size))
|
|
|
|
if np.iscomplexobj(y) and y.ndim == 1:
|
|
|
|
weights = 1/np.abs(y)**2
|
|
|
|
we = np.resize(weights, (2, weights.size))
|
|
|
|
#we = 1/N.array([y.real**2, y.imag**2])
|
|
|
|
y = np.array([y.real, y.imag])
|
|
|
|
else:
|
|
|
|
raise NotImplementedError, "need complex input for now"
|
|
|
|
dat = odr.Data(x, y, we=we)
|
|
|
|
mod = odr.Model(self.f.fitfcn, extra_args=fcns)
|
2014-04-14 13:47:16 +00:00
|
|
|
self._odr_fit = odr.ODR(dat, mod, p0, ifixx=(0,), ifixb=fixed, maxit=800)
|
|
|
|
|
|
|
|
def fit_odr_imag(self, x, y, p0, fixed, fcns):
|
|
|
|
if np.iscomplexobj(y) and y.ndim == 1:
|
|
|
|
we = 1/np.imag(y)**2
|
|
|
|
else:
|
|
|
|
raise NotImplementedError, "need complex input for now"
|
|
|
|
dat = odr.Data(x, y.imag, we=we)
|
|
|
|
mod = odr.Model(self.f.fitfcn_imag, extra_args=fcns)
|
|
|
|
self._odr_fit = odr.ODR(dat, mod, p0, ifixx=(0,), ifixb=fixed, maxit=800)
|
2014-04-07 11:41:39 +00:00
|
|
|
|
2014-04-11 07:29:32 +00:00
|
|
|
@pyqtSlot()
|
2014-04-07 11:41:39 +00:00
|
|
|
def fit(self):
|
|
|
|
#print "TID in FitRoutine", QThread.thread()
|
|
|
|
self._odr_fit.run()
|
|
|
|
self.finished_fit.emit()
|
|
|
|
|
|
|
|
def result(self):
|
|
|
|
return self._odr_fit.output
|
|
|
|
|
|
|
|
|
2014-03-19 21:02:26 +00:00
|
|
|
class FunctionRegister:
|
|
|
|
def __init__(self):
|
|
|
|
self.registry = {}
|
|
|
|
|
2014-04-11 07:29:32 +00:00
|
|
|
def register_function(self, obj):
|
2014-03-20 14:15:40 +00:00
|
|
|
#print "FR: Registering:",obj
|
2014-04-11 16:20:16 +00:00
|
|
|
id_string = obj.id_label
|
2014-03-19 21:02:26 +00:00
|
|
|
if self.registry.has_key(obj):
|
|
|
|
raise AssertionError,"The object is already registered! This should NOT happen"
|
|
|
|
self.registry[obj]=id_string
|
2014-03-20 14:15:40 +00:00
|
|
|
#print "FR: ",self.registry
|
2014-03-19 21:02:26 +00:00
|
|
|
|
|
|
|
def unregister_function(self, obj):
|
2014-03-20 14:15:40 +00:00
|
|
|
#print "FR: UnRegistering:",obj
|
2014-03-19 21:02:26 +00:00
|
|
|
if self.registry.has_key(obj):
|
|
|
|
self.registry.pop(obj)
|
|
|
|
else:
|
2014-04-14 12:01:45 +00:00
|
|
|
obj.deleteLater()
|
2014-03-19 21:02:26 +00:00
|
|
|
raise AssertionError,"The object is not in the registry! This should NOT happen"
|
2014-03-20 14:15:40 +00:00
|
|
|
#print "FR: ",self.registry
|
2014-03-05 15:59:35 +00:00
|
|
|
|
2014-03-19 21:02:26 +00:00
|
|
|
def get_registered_functions(self):
|
|
|
|
return self.registry
|
2014-04-14 13:47:16 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
############## deprecated #####################
|
|
|
|
def fit_odr_cmplx(x, y, p0, fixed, fcns):
|
|
|
|
f = FitFunctionCreator()
|
|
|
|
#if x.ndim < 2:
|
|
|
|
# x = N.resize(x, (2,x.size))
|
|
|
|
if np.iscomplexobj(y) and y.ndim == 1:
|
|
|
|
weights = 1/np.abs(y)**2
|
|
|
|
we = np.resize(weights, (2, weights.size))
|
|
|
|
#we = 1/N.array([y.real**2, y.imag**2])
|
|
|
|
y = np.array([y.real, y.imag])
|
|
|
|
else:
|
|
|
|
raise NotImplementedError, "need complex input for now"
|
|
|
|
dat = odr.Data(x, y, we=we)
|
|
|
|
mod = odr.Model(f.fitfcn, extra_args=fcns)
|
|
|
|
fit = odr.ODR(dat, mod, p0, ifixx=(0,), ifixb=fixed, maxit=8000)
|
|
|
|
fit.run()
|
|
|
|
#print fit.output.pprint()
|
|
|
|
return fit.output
|
|
|
|
|
|
|
|
### define funcs here
|
|
|
|
class Functions(QObject):
|
|
|
|
def __init__(self):
|
|
|
|
super(Functions,self).__init__()
|
|
|
|
self.list = {
|
|
|
|
# provides functions: "id_string":(function, number_of_parameters)
|
|
|
|
"hn":(self.hn_cmplx, 4),
|
|
|
|
"conductivity":(self.cond_cmplx, 3),
|
|
|
|
"power":(self.power_cmplx, 2),
|
|
|
|
"static":(self.static_cmplx, 1),
|
|
|
|
"yaff":(self.yaff, 8)
|
|
|
|
}
|
|
|
|
self.YAFF = libyaff.Yaff()
|
|
|
|
|
|
|
|
def hn_cmplx(self, p, x):
|
|
|
|
om = 2*np.pi*x
|
|
|
|
#hn = om*1j
|
|
|
|
eps,t,a,b = p
|
|
|
|
hn = eps/(1+(1j*om*t)**a)**b
|
|
|
|
cplx = np.array([hn.real, -hn.imag])
|
|
|
|
return cplx
|
|
|
|
|
|
|
|
def cond_cmplx(self, p, x):
|
|
|
|
om = 2*np.pi*x
|
|
|
|
sgma, isgma, n = p
|
|
|
|
cond = sgma/(om**n) + isgma/(1j*om**n) # Jonscher (Universal Dielectric Response: e",e' prop sigma/omega**n
|
|
|
|
cplx = np.array([cond.real, -cond.imag])
|
|
|
|
return cplx
|
|
|
|
|
|
|
|
def power_cmplx(self, p, x):
|
|
|
|
om = 2*np.pi*x
|
|
|
|
sgma,n = p
|
|
|
|
power = sgma/(om*1j)**n
|
|
|
|
cplx = np.array([power.real, -power.imag])
|
|
|
|
return cplx
|
|
|
|
|
|
|
|
def static_cmplx(self, p, x):
|
|
|
|
eps_inf = p[0]
|
|
|
|
static = np.ones( (2,x.size) )*eps_inf
|
|
|
|
static[1,:] *= 0 # set imag part zero
|
|
|
|
#cplx = N.array([static.real, static.imag])
|
|
|
|
return static
|
|
|
|
|
|
|
|
def yaff(self,p,x):
|
|
|
|
ya = self.YAFF.yaff(p[:8],x)
|
|
|
|
cplx = np.array([ya.imag, ya.real])
|
|
|
|
return cplx
|
|
|
|
|
|
|
|
def get(self,name):
|
|
|
|
return self.list[name]
|
|
|
|
|
|
|
|
def get_function(self,name):
|
|
|
|
return self.list[name][0]
|
|
|
|
|
|
|
|
|
|
|
|
def fit_anneal(x, y, p0, fixed, funcs):
|
|
|
|
raise NotImplementedError
|
|
|
|
bounds = [(0, 1e14), (0, 1)]
|
|
|
|
for i in xrange(len(p0[2:]) / 4):
|
|
|
|
bounds.append((1e-4, 1e12)) # delta_eps
|
|
|
|
bounds.append((1e-12, 1e3)) # tau
|
|
|
|
bounds.append((0.1, 1)) # a
|
|
|
|
bounds.append((0.1, 1)) # b
|
|
|
|
ret = opt.anneal(mini_func, p0,
|
|
|
|
args=(x, y),
|
|
|
|
maxeval=20000,
|
|
|
|
maxiter=30000,
|
|
|
|
lower=[b[0] for b in bounds],
|
|
|
|
upper=[b[1] for b in bounds],
|
|
|
|
dwell=100,
|
|
|
|
full_output=1)
|
|
|
|
#pmin, func_min, final_Temp, cooling_iters,accepted_tests, retval
|
|
|
|
#retval : int
|
|
|
|
#Flag indicating stopping condition::
|
|
|
|
|
|
|
|
# 0 : Points no longer changing
|
|
|
|
# 1 : Cooled to final temperature
|
|
|
|
# 2 : Maximum function evaluations
|
|
|
|
# 3 : Maximum cooling iterations reached
|
|
|
|
# 4 : Maximum accepted query locations reached
|
|
|
|
# 5 : Final point not the minimum amongst encountered points
|
|
|
|
|
|
|
|
print "Stop reason", ret
|
|
|
|
return ret[0]
|
|
|
|
|
|
|
|
|
|
|
|
def fit_lbfgsb(x, y, p0, fixed, funcs):
|
|
|
|
raise NotImplementedError
|
|
|
|
# TODO fixed parameters…
|
|
|
|
bounds = [(0, None), (0, 1)]
|
|
|
|
for i in xrange(len(p0[3:]) / 4):
|
|
|
|
bounds.append((1e-4, 1e12)) # delta_eps
|
|
|
|
bounds.append((1e-12, 1e3)) # tau
|
|
|
|
bounds.append((0.1, 1)) # a
|
|
|
|
bounds.append((0.1, 1)) # b
|
|
|
|
|
|
|
|
x, f_minvalue, info_dict = opt.fmin_l_bfgs_b(mini_func, p0,
|
|
|
|
fprime=None,
|
|
|
|
args=(x, y),
|
|
|
|
approx_grad=True,
|
|
|
|
bounds=bounds,
|
|
|
|
iprint=0,
|
|
|
|
maxfun=4000)
|
|
|
|
if info_dict['warnflag'] != 0:
|
|
|
|
print info_dict["task"]
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
# Replaced with fit_odr_cmplx
|
|
|
|
#
|
|
|
|
#def fit_odr(x, y, p0, fixed, funcs):
|
|
|
|
# dat = odr.Data(x, y, 1.0 / y**2)
|
|
|
|
# mod = odr.Model(multi_hn)
|
|
|
|
# fit = odr.ODR(dat, mod, p0, ifixx=(0,), ifixb=fixed, maxit=2000)
|
|
|
|
# fit.run()
|
|
|
|
# return fit.output.beta
|
|
|
|
|
|
|
|
|
|
|
|
def hn(p, nu):
|
|
|
|
delta_eps, tau, a, b = p
|
|
|
|
om = 2 * np.pi * nu
|
|
|
|
Phi = np.arctan((om * tau) ** a * np.sin(np.pi * a / 2.) / (1. + (om * tau) ** a * np.cos(np.pi * a / 2.)))
|
|
|
|
e_loss = delta_eps * (1 + 2 * (om * tau) ** a * np.cos(np.pi * a / 2.) + (om * tau) ** (2. * a) ) ** (
|
|
|
|
-b / 2.) * np.sin(b * Phi)
|
|
|
|
e_stor = delta_eps * (1 + 2 * (om * tau) ** a * np.cos(np.pi * a / 2.) + (om * tau) ** (2. * a) ) ** (
|
|
|
|
-b / 2.) * np.cos(b * Phi)
|
|
|
|
return e_loss # 2* oder nicht?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mini_func(p, x, y):
|
|
|
|
res = y - multi_hn(p, x)
|
|
|
|
# apply weights
|
|
|
|
res /= 1 / y
|
|
|
|
return np.sqrt(np.dot(res, res))
|
|
|
|
|
|
|
|
|
|
|
|
def multi_hn(p, nu):
|
|
|
|
conductivity = p[1]
|
|
|
|
cond_beta = p[2]
|
|
|
|
om = 2 * np.pi * nu
|
|
|
|
e_loss = conductivity / om ** cond_beta
|
|
|
|
e_loss += p[0]
|
|
|
|
#for key, igroup in groupby(p[3:], lambda x: x//4):
|
|
|
|
for i in xrange(len(p[3:]) / 4):
|
|
|
|
delta_eps, tau, a, b = p[3 + i * 4:3 + (i + 1) * 4]
|
|
|
|
#delta_eps, tau, a, b = list(igroup)
|
|
|
|
#print delta_eps,tau,a,b
|
|
|
|
#a = 0.5 *(1 + N.tanh(a))
|
|
|
|
#b = 0.5 *(1 + N.tanh(b))
|
|
|
|
Phi = np.arctan((om * tau) ** a * np.sin(np.pi * a / 2.) / (1. + (om * tau) ** a * np.cos(np.pi * a / 2.)))
|
|
|
|
e_loss += 2 * delta_eps * (1 + 2 * (om * tau) ** a * np.cos(np.pi * a / 2.) + (om * tau) ** (2. * a) ) ** (
|
|
|
|
-b / 2.) * np.sin(b * Phi)
|
|
|
|
#e_stor = delta_eps * (1+ 2*(om*tau)**a * N.cos(N.pi*a/2.) + (om*tau)**(2.*a) )**(-b/2.)*N.cos(b*Phi)
|
|
|
|
return e_loss
|
|
|
|
|
|
|
|
|
|
|
|
def tau_peak(f, a, b):
|
|
|
|
tau = (np.sin(np.pi * a / 2. / (b + 1)) / np.sin(np.pi * a * b / 2. / (b + 1))) ** (1 / a)
|
|
|
|
tau /= 2 * np.pi * f
|
|
|
|
return tau
|
|
|
|
|
|
|
|
|
|
|
|
|