Changed gr to work with time_average and use next_neighbors
This commit is contained in:
parent
cc3768925a
commit
bffcd56cdc
@ -1,4 +1,4 @@
|
||||
from typing import Callable, Optional
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike
|
||||
@ -16,7 +16,6 @@ from .coordinates import (
|
||||
from .autosave import autosave_data
|
||||
from .utils import runningmean
|
||||
from .pbc import pbc_diff, pbc_points
|
||||
from .logging import logger
|
||||
|
||||
|
||||
@autosave_data(nargs=2, kwargs_keys=("coordinates_b",))
|
||||
@ -33,7 +32,7 @@ def time_average(
|
||||
Args:
|
||||
function:
|
||||
The function that will be averaged, it has to accept exactly one argument
|
||||
which is the current atom set
|
||||
which is the current atom set (or two if coordinates_b is provided)
|
||||
coordinates: The coordinates object of the simulation
|
||||
coordinates_b: Additional coordinates object of the simulation
|
||||
skip:
|
||||
@ -54,44 +53,13 @@ def time_average(
|
||||
return np.mean(result, axis=0)
|
||||
|
||||
|
||||
def time_histogram(function, coordinates, bins, hist_range, pool=None):
|
||||
coordinate_iter = iter(coordinates)
|
||||
|
||||
if pool is not None:
|
||||
_map = pool.imap
|
||||
else:
|
||||
_map = map
|
||||
|
||||
evaluated = _map(function, coordinate_iter)
|
||||
|
||||
results = []
|
||||
hist_results = []
|
||||
for num, ev in enumerate(evaluated):
|
||||
results.append(ev)
|
||||
|
||||
if num % 100 == 0 and num > 0:
|
||||
print(num)
|
||||
r = np.array(results).T
|
||||
for i, row in enumerate(r):
|
||||
histo, _ = np.histogram(row, bins=bins, range=hist_range)
|
||||
if len(hist_results) <= i:
|
||||
hist_results.append(histo)
|
||||
else:
|
||||
hist_results[i] += histo
|
||||
results = []
|
||||
return hist_results
|
||||
|
||||
|
||||
def calc_gr(
|
||||
traj_a: Coordinates,
|
||||
traj_b: Coordinates = None,
|
||||
r_max: float = None,
|
||||
delta_r: float = 0.02,
|
||||
segments: int = 1000,
|
||||
skip: float = 0.1,
|
||||
def gr(
|
||||
atoms_a: CoordinateFrame,
|
||||
atoms_b: Optional[CoordinateFrame] = None,
|
||||
bins: Union[int, ArrayLike] = 100,
|
||||
remove_intra: bool = False,
|
||||
shear: bool = False,
|
||||
):
|
||||
**kwargs
|
||||
) -> np.ndarray:
|
||||
r"""
|
||||
Compute the radial pair distribution of one or two sets of atoms.
|
||||
|
||||
@ -99,98 +67,67 @@ def calc_gr(
|
||||
g_{AB}(r) = \frac{1}{\langle \rho_B\rangle N_A}\sum\limits_{i\in A}^{N_A}
|
||||
\sum\limits_{j\in B}^{N_B}\frac{\delta(r_{ij} -r)}{4\pi r^2}
|
||||
|
||||
For use with :func:`time_average`, define bins through the use of :func:`~functools.partial`,
|
||||
the atom sets are passed to :func:`time_average`, if a second set of atoms should be used
|
||||
specify it as ``coordinates_b`` and it will be passed to this function.
|
||||
For use with :func:`time_average`, define bins through the use of
|
||||
:func:`~functools.partial`, the atom sets are passed to :func:`time_average`, if a
|
||||
second set of atoms should be used specify it as ``coordinates_b`` and it will be
|
||||
passed to this function.
|
||||
|
||||
Args:
|
||||
atoms_a: First set of atoms, used internally
|
||||
atoms_b (opt.): Second set of atoms, used internally
|
||||
atoms_b (opt.): Second set of atoms, used internal
|
||||
bins: Bins of the radial distribution function
|
||||
box (opt.): Simulations box, if not specified this is taken from ``atoms_a.box``
|
||||
kind (opt.): Can be 'inter', 'intra' or None (default).
|
||||
chunksize (opt.):
|
||||
For large systems (N > 1000) the distaces have to be computed in chunks so the arrays
|
||||
fit into memory, this parameter controlls the size of these chunks. It should be
|
||||
as large as possible, depending on the available memory.
|
||||
returnx (opt.): If True the x ordinate of the histogram is returned.
|
||||
remove_intra: removes contributions from intra molecular pairs
|
||||
"""
|
||||
distinct = True
|
||||
if atoms_b is None:
|
||||
atoms_b = atoms_a
|
||||
distinct = False
|
||||
elif np.array_equal(atoms_a, atoms_b):
|
||||
distinct = False
|
||||
|
||||
def gr_frame(
|
||||
atoms_a: CoordinateFrame,
|
||||
atoms_b: CoordinateFrame,
|
||||
bins: ArrayLike,
|
||||
remove_intra: bool = False,
|
||||
):
|
||||
box = atoms_b.box
|
||||
n = len(atoms_a) / np.prod(np.diag(box))
|
||||
V = 4 / 3 * np.pi * bins[-1] ** 3
|
||||
particles_in_volume = int(n * V * 1.1)
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
atoms_b = atoms_b % np.diag(box)
|
||||
atoms_b_res_ids = atoms_b.residue_ids
|
||||
atoms_b_tree = KDTree(atoms_b, boxsize=np.diag(box))
|
||||
else:
|
||||
atoms_b_pbc, atoms_b_pbc_index = pbc_points(
|
||||
atoms_b, box, thickness=bins[-1] + 0.1, index=True, shear=shear
|
||||
)
|
||||
atoms_b_res_ids = atoms_b.residue_ids[atoms_b_pbc_index]
|
||||
atoms_b_tree = KDTree(atoms_b_pbc)
|
||||
distances, distances_index = atoms_b_tree.query(
|
||||
atoms_a, particles_in_volume, distance_upper_bound=bins[-1] + 0.1
|
||||
)
|
||||
if np.array_equal(atoms_a, atoms_b):
|
||||
distances = distances[:, 1:]
|
||||
distances_index = distances_index[:, 1:]
|
||||
|
||||
if remove_intra:
|
||||
new_distances = []
|
||||
for entry in list(zip(atoms_a.residue_ids, distances, distances_index)):
|
||||
mask = entry[1] < np.inf
|
||||
new_distances.append(
|
||||
entry[1][mask][atoms_b_res_ids[entry[2][mask]] != entry[0]]
|
||||
)
|
||||
distances = np.concatenate(new_distances)
|
||||
else:
|
||||
distances = distances.flatten()
|
||||
|
||||
hist = np.histogram(distances, bins=bins, range=(0, bins[-1]), density=False)[0]
|
||||
gr = hist / len(atoms_a)
|
||||
gr = gr / (4 / 3 * np.pi * bins[1:] ** 3 - 4 / 3 * np.pi * bins[:-1] ** 3)
|
||||
n = len(atoms_b) / np.prod(np.diag(atoms_b.box))
|
||||
gr = gr / n
|
||||
|
||||
return gr, n
|
||||
|
||||
if traj_b is None:
|
||||
traj_b = traj_a
|
||||
|
||||
start_frame = traj_a[int(len(traj_a) * skip)]
|
||||
if r_max:
|
||||
upper_bound = r_max
|
||||
box = atoms_b.box
|
||||
if isinstance(bins, int):
|
||||
upper_bound = np.min(np.diag(box))
|
||||
else:
|
||||
upper_bound = round(np.min(np.diag(start_frame.box)) / 2 - 0.05, 1)
|
||||
upper_bound = bins[-1]
|
||||
|
||||
num_steps = int(upper_bound * (1 / delta_r) + 1)
|
||||
bins = np.linspace(0, upper_bound, num_steps)
|
||||
r = bins[1:] - (bins[1] - bins[0]) / 2
|
||||
frame_indices = np.unique(
|
||||
np.int_(np.linspace(len(traj_a) * skip, len(traj_a) - 1, num=segments))
|
||||
n = len(atoms_a) / np.prod(np.diag(box))
|
||||
V = 4 / 3 * np.pi * bins[-1] ** 3
|
||||
particles_in_volume = int(n * V * 1.1)
|
||||
distances, indices = next_neighbors(
|
||||
atoms_a,
|
||||
atoms_b,
|
||||
number_of_neighbors=particles_in_volume,
|
||||
distance_upper_bound=upper_bound,
|
||||
distinct=distinct,
|
||||
**kwargs
|
||||
)
|
||||
gr = []
|
||||
n = []
|
||||
for frame_index in frame_indices:
|
||||
result = gr_frame(
|
||||
traj_a[frame_index], traj_b[frame_index], bins, remove_intra=remove_intra
|
||||
)
|
||||
gr.append(result[0])
|
||||
n.append(result[1])
|
||||
gr = np.mean(gr, axis=0)
|
||||
n = np.mean(n, axis=0)
|
||||
return r, gr, n
|
||||
|
||||
if remove_intra:
|
||||
new_distances = []
|
||||
for entry in list(zip(atoms_a.residue_ids, distances, indices)):
|
||||
mask = entry[1] < np.inf
|
||||
new_distances.append(
|
||||
entry[1][mask][atoms_b.residue_ids[entry[2][mask]] != entry[0]]
|
||||
)
|
||||
distances = np.concatenate(new_distances)
|
||||
else:
|
||||
distances = distances.flatten()
|
||||
|
||||
hist, bins = np.histogram(
|
||||
distances, bins=bins, range=(0, upper_bound), density=False
|
||||
)
|
||||
hist = hist / len(atoms_a)
|
||||
hist = hist / (4 / 3 * np.pi * bins[1:] ** 3 - 4 / 3 * np.pi * bins[:-1] ** 3)
|
||||
n = len(atoms_b) / np.prod(np.diag(atoms_b.box))
|
||||
hist = hist / n
|
||||
|
||||
return hist
|
||||
|
||||
|
||||
def distance_distribution(atoms, bins):
|
||||
def distance_distribution(
|
||||
atoms: ArrayLike, bins: Optional[int, ArrayLike]
|
||||
) -> np.ndarray:
|
||||
connection_vectors = atoms[:-1, :] - atoms[1:, :]
|
||||
connection_lengths = (connection_vectors**2).sum(axis=1) ** 0.5
|
||||
return np.histogram(connection_lengths, bins)[0]
|
||||
|
Loading…
x
Reference in New Issue
Block a user