Compare commits
	
		
			4 Commits
		
	
	
		
			7b9f8b6773
			...
			fix_nondet
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 67d3e70a66 | ||
| c09549902a | |||
| b7bb8cb379 | |||
| 33c4756e34 | 
| @@ -73,7 +73,9 @@ def checksum(*args, csum=None): | ||||
|         elif isinstance(arg, FunctionType): | ||||
|             csum.update(strip_comments(inspect.getsource(arg)).encode()) | ||||
|             c = inspect.getclosurevars(arg) | ||||
|             for v in {**c.nonlocals, **c.globals}.values(): | ||||
|             merged = {**c.nonlocals, **c.globals} | ||||
|             for key in sorted(merged):  # deterministic ordering | ||||
|                 v = merged[key] | ||||
|                 if v is not arg: | ||||
|                     checksum(v, csum=csum) | ||||
|         elif isinstance(arg, functools.partial): | ||||
|   | ||||
| @@ -4,7 +4,6 @@ from typing import Optional | ||||
| import numpy as np | ||||
| from numpy.typing import ArrayLike, NDArray | ||||
| from numpy.polynomial.polynomial import Polynomial as Poly | ||||
| import math | ||||
| from scipy.spatial import KDTree | ||||
| import pandas as pd | ||||
| import multiprocessing as mp | ||||
| @@ -49,7 +48,7 @@ def _pbc_points_reduced( | ||||
|  | ||||
| def _build_tree(points, box, r_max, pore_geometry): | ||||
|     if np.all(np.diag(np.diag(box)) == box): | ||||
|         tree = KDTree(points, boxsize=box) | ||||
|         tree = KDTree(points % box, boxsize=box) | ||||
|         points_pbc_index = None | ||||
|     else: | ||||
|         points_pbc, points_pbc_index = _pbc_points_reduced( | ||||
| @@ -79,11 +78,7 @@ def occupation_matrix( | ||||
|     z_bins = np.arange(0, box[2][2] + edge_length, edge_length) | ||||
|     bins = [x_bins, y_bins, z_bins] | ||||
|     # Trajectory is split for parallel computing | ||||
|     size = math.ceil(len(frame_indices) / nodes) | ||||
|     indices = [ | ||||
|         np.arange(len(frame_indices))[i : i + size] | ||||
|         for i in range(0, len(frame_indices), size) | ||||
|     ] | ||||
|     indices = np.array_split(frame_indices, nodes) | ||||
|     pool = mp.Pool(nodes) | ||||
|     results = pool.map( | ||||
|         partial(_calc_histogram, trajectory=trajectory, bins=bins), indices | ||||
| @@ -277,7 +272,11 @@ def distance_resolved_energies( | ||||
|  | ||||
|  | ||||
| def find_energy_maxima( | ||||
|     energy_df: pd.DataFrame, r_min: float, r_max: float | ||||
|     energy_df: pd.DataFrame, | ||||
|     r_min: float, | ||||
|     r_max: float, | ||||
|     r_eval: float = None, | ||||
|     degree: int = 2, | ||||
| ) -> pd.DataFrame: | ||||
|     distances = [] | ||||
|     energies = [] | ||||
| @@ -286,6 +285,9 @@ def find_energy_maxima( | ||||
|         x = np.array(data_d["r"]) | ||||
|         y = np.array(data_d["energy"]) | ||||
|         mask = (x >= r_min) * (x <= r_max) | ||||
|         p3 = Poly.fit(x[mask], y[mask], deg=2) | ||||
|         energies.append(np.max(p3(np.linspace(r_min, r_max, 1000)))) | ||||
|         p3 = Poly.fit(x[mask], y[mask], deg=degree) | ||||
|         if r_eval is None: | ||||
|             energies.append(np.max(p3(np.linspace(r_min, r_max, 1000)))) | ||||
|         else: | ||||
|             energies.append(p3(r_eval)) | ||||
|     return pd.DataFrame({"d": distances, "energy": energies}) | ||||
|   | ||||
| @@ -13,19 +13,7 @@ def trajectory(request): | ||||
|  | ||||
|  | ||||
| def test_get_fel(trajectory): | ||||
|     test_array = np.array( | ||||
|         [ | ||||
|             184.4909136, | ||||
|             233.79320471, | ||||
|             223.12003988, | ||||
|             228.49746397, | ||||
|             200.5626769, | ||||
|             212.82484221, | ||||
|             165.10818396, | ||||
|             170.74123681, | ||||
|             175.86672931, | ||||
|         ] | ||||
|     ) | ||||
|     test_array = np.array([210., 214., 209., 192., 200., 193., 230., 218., 266.]) | ||||
|  | ||||
|     OW = trajectory.subset(atom_name="OW") | ||||
|     box = trajectory[0].box | ||||
|   | ||||
		Reference in New Issue
	
	Block a user