Compare commits
6 Commits
c09549902a
...
fix/nojump
Author | SHA1 | Date | |
---|---|---|---|
|
9ff3badab1 | ||
|
492098fe01 | ||
65ac6e9143 | |||
|
4047db209c | ||
90bd90a608 | |||
|
67d3e70a66 |
@@ -73,7 +73,9 @@ def checksum(*args, csum=None):
|
||||
elif isinstance(arg, FunctionType):
|
||||
csum.update(strip_comments(inspect.getsource(arg)).encode())
|
||||
c = inspect.getclosurevars(arg)
|
||||
for v in {**c.nonlocals, **c.globals}.values():
|
||||
merged = {**c.nonlocals, **c.globals}
|
||||
for key in sorted(merged): # deterministic ordering
|
||||
v = merged[key]
|
||||
if v is not arg:
|
||||
checksum(v, csum=csum)
|
||||
elif isinstance(arg, functools.partial):
|
||||
|
@@ -182,10 +182,10 @@ def tetrahedral_order(
|
||||
)
|
||||
|
||||
# Connection vectors
|
||||
neighbors_1 -= atoms
|
||||
neighbors_2 -= atoms
|
||||
neighbors_3 -= atoms
|
||||
neighbors_4 -= atoms
|
||||
neighbors_1 = pbc_diff(neighbors_1, atoms, box=atoms.box)
|
||||
neighbors_2 = pbc_diff(neighbors_2, atoms, box=atoms.box)
|
||||
neighbors_3 = pbc_diff(neighbors_3, atoms, box=atoms.box)
|
||||
neighbors_4 = pbc_diff(neighbors_4, atoms, box=atoms.box)
|
||||
|
||||
# Normed Connection vectors
|
||||
neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1)
|
||||
|
@@ -149,32 +149,21 @@ def nojump(frame: CoordinateFrame, usecache: bool = True) -> CoordinateFrame:
|
||||
i0 = 0
|
||||
delta = 0
|
||||
|
||||
delta = (
|
||||
delta
|
||||
+ np.array(
|
||||
np.vstack(
|
||||
[m[i0 : abstep + 1].sum(axis=0) for m in reader.nojump_matrices]
|
||||
).T
|
||||
)
|
||||
@ frame.box
|
||||
)
|
||||
delta = (delta
|
||||
+ np.vstack(
|
||||
[m[i0 : abstep + 1].sum(axis=0) for m in reader.nojump_matrices]
|
||||
).T)
|
||||
|
||||
reader._nojump_cache[abstep] = delta
|
||||
while len(reader._nojump_cache) > NOJUMP_CACHESIZE:
|
||||
reader._nojump_cache.popitem(last=False)
|
||||
delta = delta[selection, :]
|
||||
else:
|
||||
delta = (
|
||||
np.array(
|
||||
np.vstack(
|
||||
[
|
||||
m[: frame.step + 1, selection].sum(axis=0)
|
||||
for m in reader.nojump_matrices
|
||||
]
|
||||
delta = np.vstack(
|
||||
[m[: frame.step + 1, selection].sum(axis=0) for m in reader.nojump_matrices]
|
||||
).T
|
||||
)
|
||||
@ frame.box
|
||||
)
|
||||
|
||||
delta = delta[selection, :]
|
||||
delta = np.array(delta @ frame.box)
|
||||
return frame - delta
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user