Compare commits
12 Commits
0c940115af
...
main
Author | SHA1 | Date | |
---|---|---|---|
c09549902a | |||
b7bb8cb379 | |||
33c4756e34 | |||
7b9f8b6773 | |||
c89cead81c | |||
31eb145a13 | |||
af3758cbef | |||
93d020a4de | |||
b5395098ce | |||
5e80701562 | |||
363e420cd8 | |||
6b77ef78e1 |
@ -218,7 +218,7 @@ class Coordinates:
|
||||
self.get_frame.clear_cache()
|
||||
|
||||
def __iter__(self):
|
||||
for i in range(len(self))[self._slice]:
|
||||
for i in range(len(self.frames))[self._slice]:
|
||||
yield self[i]
|
||||
|
||||
@singledispatchmethod
|
||||
@ -232,7 +232,7 @@ class Coordinates:
|
||||
return sliced
|
||||
|
||||
def __len__(self):
|
||||
return len(self.frames)
|
||||
return len(self.frames[self._slice])
|
||||
|
||||
def __checksum__(self):
|
||||
return checksum(self.frames, self.atom_filter, self._slice, self.mode)
|
||||
|
@ -11,7 +11,7 @@ from mdevaluate.coordinates import CoordinateFrame, Coordinates
|
||||
from mdevaluate.pbc import pbc_points
|
||||
|
||||
|
||||
def a_ij(atoms: ArrayLike, N: int = 4, l: int = 3) -> tuple[NDArray, NDArray]:
|
||||
def calc_aij(atoms: ArrayLike, N: int = 4, l: int = 3) -> tuple[NDArray, NDArray]:
|
||||
tree = KDTree(atoms)
|
||||
|
||||
dist, indices = tree.query(atoms, N + 1)
|
||||
@ -84,18 +84,18 @@ def count_ice_types(iceTypes: NDArray) -> NDArray:
|
||||
|
||||
|
||||
def selector_ice(
|
||||
start_frame: CoordinateFrame,
|
||||
traj: Coordinates,
|
||||
oxygen_atoms_water: CoordinateFrame,
|
||||
chosen_ice_types: ArrayLike,
|
||||
combined: bool = True,
|
||||
next_neighbor_distance: float = 0.35,
|
||||
) -> NDArray:
|
||||
oxygen = traj.subset(atom_name="OW")
|
||||
atoms = oxygen[start_frame.step]
|
||||
atoms = atoms % np.diag(atoms.box)
|
||||
atoms_PBC = pbc_points(atoms, thickness=1)
|
||||
aij, indices = a_ij(atoms_PBC)
|
||||
atoms = oxygen_atoms_water
|
||||
atoms_PBC = pbc_points(atoms, thickness=next_neighbor_distance * 2.2)
|
||||
aij, indices = calc_aij(atoms_PBC)
|
||||
tree = KDTree(atoms_PBC)
|
||||
neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True)
|
||||
neighbors = tree.query_ball_point(
|
||||
atoms_PBC, next_neighbor_distance, return_length=True
|
||||
) - 1
|
||||
index_SOL = atoms_PBC.tolist().index(atoms[0].tolist())
|
||||
index_SOL = np.arange(index_SOL, index_SOL + len(atoms))
|
||||
ice_Types = classify_ice(aij, indices, neighbors, index_SOL)
|
||||
@ -117,9 +117,9 @@ def selector_ice(
|
||||
def ice_types(trajectory: Coordinates, segments: int = 10000) -> pd.DataFrame:
|
||||
def ice_types_distribution(frame: CoordinateFrame, selector: Callable) -> NDArray:
|
||||
atoms_PBC = pbc_points(frame, thickness=1)
|
||||
aij, indices = a_ij(atoms_PBC)
|
||||
aij, indices = calc_aij(atoms_PBC)
|
||||
tree = KDTree(atoms_PBC)
|
||||
neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True)
|
||||
neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True) - 1
|
||||
index = selector(frame, atoms_PBC)
|
||||
ice_types_data = classify_ice(aij, indices, neighbors, index)
|
||||
ice_parts_data = count_ice_types(ice_types_data)
|
||||
@ -161,8 +161,8 @@ def ice_types(trajectory: Coordinates, segments: int = 10000) -> pd.DataFrame:
|
||||
def ice_clusters_traj(
|
||||
traj: Coordinates, segments: int = 10000, skip: float = 0.1
|
||||
) -> list:
|
||||
def ice_clusters(frame: CoordinateFrame, traj: Coordinates) -> Tuple[float, list]:
|
||||
selection = selector_ice(frame, traj, [0, 1, 2])
|
||||
def ice_clusters(frame: CoordinateFrame) -> Tuple[float, list]:
|
||||
selection = selector_ice(frame, [0, 1, 2])
|
||||
if len(selection) == 0:
|
||||
return frame.time, []
|
||||
else:
|
||||
@ -194,6 +194,6 @@ def ice_clusters_traj(
|
||||
np.int_(np.linspace(len(traj) * skip, len(traj) - 1, num=segments))
|
||||
)
|
||||
all_clusters = [
|
||||
ice_clusters(traj[frame_index], traj) for frame_index in frame_indices
|
||||
ice_clusters(traj[frame_index]) for frame_index in frame_indices
|
||||
]
|
||||
return all_clusters
|
||||
|
@ -4,7 +4,6 @@ from typing import Optional
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.polynomial.polynomial import Polynomial as Poly
|
||||
import math
|
||||
from scipy.spatial import KDTree
|
||||
import pandas as pd
|
||||
import multiprocessing as mp
|
||||
@ -47,6 +46,21 @@ def _pbc_points_reduced(
|
||||
return coordinates_pbc, indices
|
||||
|
||||
|
||||
def _build_tree(points, box, r_max, pore_geometry):
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points % box, boxsize=box)
|
||||
points_pbc_index = None
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=r_max + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
return tree, points_pbc_index
|
||||
|
||||
|
||||
def occupation_matrix(
|
||||
trajectory: Coordinates,
|
||||
edge_length: float = 0.05,
|
||||
@ -64,11 +78,7 @@ def occupation_matrix(
|
||||
z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
|
||||
bins = [x_bins, y_bins, z_bins]
|
||||
# Trajectory is split for parallel computing
|
||||
size = math.ceil(len(frame_indices) / nodes)
|
||||
indices = [
|
||||
np.arange(len(frame_indices))[i : i + size]
|
||||
for i in range(0, len(frame_indices), size)
|
||||
]
|
||||
indices = np.array_split(frame_indices, nodes)
|
||||
pool = mp.Pool(nodes)
|
||||
results = pool.map(
|
||||
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
|
||||
@ -113,23 +123,14 @@ def find_maxima(
|
||||
maxima_df = occupation_df.copy()
|
||||
maxima_df["maxima"] = None
|
||||
points = np.array(maxima_df[["x", "y", "z"]])
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
all_neighbors = tree.query_ball_point(points, radius)
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=radius + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
all_neighbors = tree.query_ball_point(points, radius)
|
||||
all_neighbors = points_pbc_index[all_neighbors]
|
||||
tree, points_pbc_index = _build_tree(points, box, radius, pore_geometry)
|
||||
for i in range(len(maxima_df)):
|
||||
if maxima_df.loc[i, "maxima"] is not None:
|
||||
continue
|
||||
neighbors = np.array(all_neighbors[i])
|
||||
maxima_pos = maxima_df.loc[i, ["x", "y", "z"]]
|
||||
neighbors = np.array(tree.query_ball_point(maxima_pos, radius))
|
||||
if points_pbc_index is not None:
|
||||
neighbors = points_pbc_index[neighbors]
|
||||
neighbors = neighbors[neighbors != i]
|
||||
if len(neighbors) == 0:
|
||||
maxima_df.loc[i, "maxima"] = True
|
||||
@ -154,16 +155,7 @@ def _calc_energies(
|
||||
nodes: int = 8,
|
||||
) -> NDArray:
|
||||
points = np.array(maxima_df[["x", "y", "z"]])
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=bins[-1] + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
tree, points_pbc_index = _build_tree(points, box, bins[-1], pore_geometry)
|
||||
maxima = maxima_df.loc[maxima_indices, ["x", "y", "z"]]
|
||||
maxima_occupations = np.array(maxima_df.loc[maxima_indices, "occupation"])
|
||||
num_of_neighbors = np.max(
|
||||
@ -187,7 +179,7 @@ def _calc_energies(
|
||||
all_occupied_bins_hist = []
|
||||
if distances.ndim == 1:
|
||||
current_distances = distances[1:][distances[1:] <= bins[-1]]
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
if points_pbc_index is None:
|
||||
current_indices = indices[1:][distances[1:] <= bins[-1]]
|
||||
else:
|
||||
current_indices = points_pbc_index[indices[1:][distances[1:] <= bins[-1]]]
|
||||
@ -201,7 +193,7 @@ def _calc_energies(
|
||||
return result
|
||||
for i, maxima_occupation in enumerate(maxima_occupations):
|
||||
current_distances = distances[i, 1:][distances[i, 1:] <= bins[-1]]
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
if points_pbc_index is None:
|
||||
current_indices = indices[i, 1:][distances[i, 1:] <= bins[-1]]
|
||||
else:
|
||||
current_indices = points_pbc_index[
|
||||
@ -280,7 +272,11 @@ def distance_resolved_energies(
|
||||
|
||||
|
||||
def find_energy_maxima(
|
||||
energy_df: pd.DataFrame, r_min: float, r_max: float
|
||||
energy_df: pd.DataFrame,
|
||||
r_min: float,
|
||||
r_max: float,
|
||||
r_eval: float = None,
|
||||
degree: int = 2,
|
||||
) -> pd.DataFrame:
|
||||
distances = []
|
||||
energies = []
|
||||
@ -289,6 +285,9 @@ def find_energy_maxima(
|
||||
x = np.array(data_d["r"])
|
||||
y = np.array(data_d["energy"])
|
||||
mask = (x >= r_min) * (x <= r_max)
|
||||
p3 = Poly.fit(x[mask], y[mask], deg=2)
|
||||
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
|
||||
p3 = Poly.fit(x[mask], y[mask], deg=degree)
|
||||
if r_eval is None:
|
||||
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
|
||||
else:
|
||||
energies.append(p3(r_eval))
|
||||
return pd.DataFrame({"d": distances, "energy": energies})
|
||||
|
@ -13,48 +13,24 @@ def trajectory(request):
|
||||
|
||||
|
||||
def test_get_fel(trajectory):
|
||||
test_array = np.array(
|
||||
[
|
||||
174.46253634,
|
||||
174.60905476,
|
||||
178.57658092,
|
||||
182.43001192,
|
||||
180.57916378,
|
||||
176.49886217,
|
||||
178.96018547,
|
||||
181.13561782,
|
||||
178.31026314,
|
||||
176.08903996,
|
||||
180.71215345,
|
||||
181.59703135,
|
||||
180.34329368,
|
||||
187.02474488,
|
||||
197.99167477,
|
||||
214.05788031,
|
||||
245.58571282,
|
||||
287.52457507,
|
||||
331.53492965,
|
||||
]
|
||||
)
|
||||
test_array = np.array([210., 214., 209., 192., 200., 193., 230., 218., 266.])
|
||||
|
||||
OW = trajectory.subset(atom_name="OW")
|
||||
|
||||
box = trajectory[0].box
|
||||
box_voxels = (np.diag(box) // [0.05, 0.05, 0.05] + [1, 1, 1]) * [0.05, 0.05, 0.05]
|
||||
occupation_matrix = fel.occupation_matrix(OW, skip=0, segments=1000)
|
||||
occupation_matrix = fel.occupation_matrix(OW, skip=0, segments=10)
|
||||
radius_maxima = 0.05 * 3 ** (1 / 2) + 0.05 / 100
|
||||
maxima_matrix = fel.find_maxima(
|
||||
occupation_matrix,
|
||||
box=box_voxels,
|
||||
radius=radius_maxima,
|
||||
pore_geometry="cylindrical"
|
||||
pore_geometry="cylindrical",
|
||||
)
|
||||
maxima_matrix = fel.add_distances(maxima_matrix, "cylindrical", np.diag(box) / 2)
|
||||
r_bins = np.arange(0, 1, 0.02)
|
||||
distance_bins = np.arange(0.05, 2.05, 0.1)
|
||||
r_bins = np.arange(0, 0.5, 0.02)
|
||||
distance_bins = np.arange(1.8, 1.9, 0.01)
|
||||
energy_df = fel.distance_resolved_energies(
|
||||
maxima_matrix, distance_bins, r_bins, box, "cylindrical", 225
|
||||
)
|
||||
result = fel.find_energy_maxima(energy_df, r_min=0.05, r_max=0.15)
|
||||
|
||||
assert (np.round(np.array(result["energy"])) == np.round(test_array)).all()
|
||||
|
Reference in New Issue
Block a user