14 Commits

Author SHA1 Message Date
90bd90a608 Merge pull request 'Added some ordering to checksums from FunctionType since these could depending on input fail to be deterministic' (#2) from fix_nondeterministic_checksum into main
Reviewed-on: #2
2025-06-16 18:45:48 +00:00
67d3e70a66 Added some ordering to checksums from FunctionType since these could depending on input fail to be deterministic 2025-06-16 20:09:50 +02:00
c09549902a Added Robins adjustments for FEL 2024-05-27 14:27:09 +02:00
b7bb8cb379 Merge branch 'refs/heads/mdeval_dev' 2024-05-02 16:18:18 +02:00
33c4756e34 Fixed frame-index selection in occupancy calculation. 2024-05-02 16:17:54 +02:00
7b9f8b6773 Merge branch 'mdeval_dev' 2024-03-05 13:58:15 +01:00
c89cead81c Moved KDTree build up in its own function and made find_maxima query for each point separately. 2024-03-05 13:57:55 +01:00
31eb145a13 Merge branch 'mdeval_dev'
# Conflicts:
#	src/mdevaluate/coordinates.py
2024-02-26 14:20:12 +01:00
af3758cbef Fixed iter in Coordinates 2024-02-26 14:18:23 +01:00
93d020a4de Updated fel test to run faster 2024-02-26 14:14:29 +01:00
b5395098ce Fixed iter of Coordinates after last change 2024-02-26 13:57:44 +01:00
5e80701562 Coordinates returns now correct length after slicing 2024-02-26 13:50:46 +01:00
363e420cd8 Fixed chill ice_cluster_traj() function 2024-02-16 11:11:17 +01:00
6b77ef78e1 Fixed chill selector_ice() function 2024-02-15 11:49:20 +01:00
5 changed files with 58 additions and 81 deletions

View File

@ -73,7 +73,9 @@ def checksum(*args, csum=None):
elif isinstance(arg, FunctionType):
csum.update(strip_comments(inspect.getsource(arg)).encode())
c = inspect.getclosurevars(arg)
for v in {**c.nonlocals, **c.globals}.values():
merged = {**c.nonlocals, **c.globals}
for key in sorted(merged): # deterministic ordering
v = merged[key]
if v is not arg:
checksum(v, csum=csum)
elif isinstance(arg, functools.partial):

View File

@ -218,7 +218,7 @@ class Coordinates:
self.get_frame.clear_cache()
def __iter__(self):
for i in range(len(self))[self._slice]:
for i in range(len(self.frames))[self._slice]:
yield self[i]
@singledispatchmethod
@ -232,7 +232,7 @@ class Coordinates:
return sliced
def __len__(self):
return len(self.frames)
return len(self.frames[self._slice])
def __checksum__(self):
return checksum(self.frames, self.atom_filter, self._slice, self.mode)

View File

@ -11,7 +11,7 @@ from mdevaluate.coordinates import CoordinateFrame, Coordinates
from mdevaluate.pbc import pbc_points
def a_ij(atoms: ArrayLike, N: int = 4, l: int = 3) -> tuple[NDArray, NDArray]:
def calc_aij(atoms: ArrayLike, N: int = 4, l: int = 3) -> tuple[NDArray, NDArray]:
tree = KDTree(atoms)
dist, indices = tree.query(atoms, N + 1)
@ -84,18 +84,18 @@ def count_ice_types(iceTypes: NDArray) -> NDArray:
def selector_ice(
start_frame: CoordinateFrame,
traj: Coordinates,
oxygen_atoms_water: CoordinateFrame,
chosen_ice_types: ArrayLike,
combined: bool = True,
next_neighbor_distance: float = 0.35,
) -> NDArray:
oxygen = traj.subset(atom_name="OW")
atoms = oxygen[start_frame.step]
atoms = atoms % np.diag(atoms.box)
atoms_PBC = pbc_points(atoms, thickness=1)
aij, indices = a_ij(atoms_PBC)
atoms = oxygen_atoms_water
atoms_PBC = pbc_points(atoms, thickness=next_neighbor_distance * 2.2)
aij, indices = calc_aij(atoms_PBC)
tree = KDTree(atoms_PBC)
neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True)
neighbors = tree.query_ball_point(
atoms_PBC, next_neighbor_distance, return_length=True
) - 1
index_SOL = atoms_PBC.tolist().index(atoms[0].tolist())
index_SOL = np.arange(index_SOL, index_SOL + len(atoms))
ice_Types = classify_ice(aij, indices, neighbors, index_SOL)
@ -117,9 +117,9 @@ def selector_ice(
def ice_types(trajectory: Coordinates, segments: int = 10000) -> pd.DataFrame:
def ice_types_distribution(frame: CoordinateFrame, selector: Callable) -> NDArray:
atoms_PBC = pbc_points(frame, thickness=1)
aij, indices = a_ij(atoms_PBC)
aij, indices = calc_aij(atoms_PBC)
tree = KDTree(atoms_PBC)
neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True)
neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True) - 1
index = selector(frame, atoms_PBC)
ice_types_data = classify_ice(aij, indices, neighbors, index)
ice_parts_data = count_ice_types(ice_types_data)
@ -161,8 +161,8 @@ def ice_types(trajectory: Coordinates, segments: int = 10000) -> pd.DataFrame:
def ice_clusters_traj(
traj: Coordinates, segments: int = 10000, skip: float = 0.1
) -> list:
def ice_clusters(frame: CoordinateFrame, traj: Coordinates) -> Tuple[float, list]:
selection = selector_ice(frame, traj, [0, 1, 2])
def ice_clusters(frame: CoordinateFrame) -> Tuple[float, list]:
selection = selector_ice(frame, [0, 1, 2])
if len(selection) == 0:
return frame.time, []
else:
@ -194,6 +194,6 @@ def ice_clusters_traj(
np.int_(np.linspace(len(traj) * skip, len(traj) - 1, num=segments))
)
all_clusters = [
ice_clusters(traj[frame_index], traj) for frame_index in frame_indices
ice_clusters(traj[frame_index]) for frame_index in frame_indices
]
return all_clusters

View File

@ -4,7 +4,6 @@ from typing import Optional
import numpy as np
from numpy.typing import ArrayLike, NDArray
from numpy.polynomial.polynomial import Polynomial as Poly
import math
from scipy.spatial import KDTree
import pandas as pd
import multiprocessing as mp
@ -47,6 +46,21 @@ def _pbc_points_reduced(
return coordinates_pbc, indices
def _build_tree(points, box, r_max, pore_geometry):
if np.all(np.diag(np.diag(box)) == box):
tree = KDTree(points % box, boxsize=box)
points_pbc_index = None
else:
points_pbc, points_pbc_index = _pbc_points_reduced(
points,
pore_geometry,
box,
thickness=r_max + 0.01,
)
tree = KDTree(points_pbc)
return tree, points_pbc_index
def occupation_matrix(
trajectory: Coordinates,
edge_length: float = 0.05,
@ -64,11 +78,7 @@ def occupation_matrix(
z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
bins = [x_bins, y_bins, z_bins]
# Trajectory is split for parallel computing
size = math.ceil(len(frame_indices) / nodes)
indices = [
np.arange(len(frame_indices))[i : i + size]
for i in range(0, len(frame_indices), size)
]
indices = np.array_split(frame_indices, nodes)
pool = mp.Pool(nodes)
results = pool.map(
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
@ -113,23 +123,14 @@ def find_maxima(
maxima_df = occupation_df.copy()
maxima_df["maxima"] = None
points = np.array(maxima_df[["x", "y", "z"]])
if np.all(np.diag(np.diag(box)) == box):
tree = KDTree(points, boxsize=box)
all_neighbors = tree.query_ball_point(points, radius)
else:
points_pbc, points_pbc_index = _pbc_points_reduced(
points,
pore_geometry,
box,
thickness=radius + 0.01,
)
tree = KDTree(points_pbc)
all_neighbors = tree.query_ball_point(points, radius)
all_neighbors = points_pbc_index[all_neighbors]
tree, points_pbc_index = _build_tree(points, box, radius, pore_geometry)
for i in range(len(maxima_df)):
if maxima_df.loc[i, "maxima"] is not None:
continue
neighbors = np.array(all_neighbors[i])
maxima_pos = maxima_df.loc[i, ["x", "y", "z"]]
neighbors = np.array(tree.query_ball_point(maxima_pos, radius))
if points_pbc_index is not None:
neighbors = points_pbc_index[neighbors]
neighbors = neighbors[neighbors != i]
if len(neighbors) == 0:
maxima_df.loc[i, "maxima"] = True
@ -154,16 +155,7 @@ def _calc_energies(
nodes: int = 8,
) -> NDArray:
points = np.array(maxima_df[["x", "y", "z"]])
if np.all(np.diag(np.diag(box)) == box):
tree = KDTree(points, boxsize=box)
else:
points_pbc, points_pbc_index = _pbc_points_reduced(
points,
pore_geometry,
box,
thickness=bins[-1] + 0.01,
)
tree = KDTree(points_pbc)
tree, points_pbc_index = _build_tree(points, box, bins[-1], pore_geometry)
maxima = maxima_df.loc[maxima_indices, ["x", "y", "z"]]
maxima_occupations = np.array(maxima_df.loc[maxima_indices, "occupation"])
num_of_neighbors = np.max(
@ -187,7 +179,7 @@ def _calc_energies(
all_occupied_bins_hist = []
if distances.ndim == 1:
current_distances = distances[1:][distances[1:] <= bins[-1]]
if np.all(np.diag(np.diag(box)) == box):
if points_pbc_index is None:
current_indices = indices[1:][distances[1:] <= bins[-1]]
else:
current_indices = points_pbc_index[indices[1:][distances[1:] <= bins[-1]]]
@ -201,7 +193,7 @@ def _calc_energies(
return result
for i, maxima_occupation in enumerate(maxima_occupations):
current_distances = distances[i, 1:][distances[i, 1:] <= bins[-1]]
if np.all(np.diag(np.diag(box)) == box):
if points_pbc_index is None:
current_indices = indices[i, 1:][distances[i, 1:] <= bins[-1]]
else:
current_indices = points_pbc_index[
@ -280,7 +272,11 @@ def distance_resolved_energies(
def find_energy_maxima(
energy_df: pd.DataFrame, r_min: float, r_max: float
energy_df: pd.DataFrame,
r_min: float,
r_max: float,
r_eval: float = None,
degree: int = 2,
) -> pd.DataFrame:
distances = []
energies = []
@ -289,6 +285,9 @@ def find_energy_maxima(
x = np.array(data_d["r"])
y = np.array(data_d["energy"])
mask = (x >= r_min) * (x <= r_max)
p3 = Poly.fit(x[mask], y[mask], deg=2)
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
p3 = Poly.fit(x[mask], y[mask], deg=degree)
if r_eval is None:
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
else:
energies.append(p3(r_eval))
return pd.DataFrame({"d": distances, "energy": energies})

View File

@ -13,48 +13,24 @@ def trajectory(request):
def test_get_fel(trajectory):
test_array = np.array(
[
174.46253634,
174.60905476,
178.57658092,
182.43001192,
180.57916378,
176.49886217,
178.96018547,
181.13561782,
178.31026314,
176.08903996,
180.71215345,
181.59703135,
180.34329368,
187.02474488,
197.99167477,
214.05788031,
245.58571282,
287.52457507,
331.53492965,
]
)
test_array = np.array([210., 214., 209., 192., 200., 193., 230., 218., 266.])
OW = trajectory.subset(atom_name="OW")
box = trajectory[0].box
box_voxels = (np.diag(box) // [0.05, 0.05, 0.05] + [1, 1, 1]) * [0.05, 0.05, 0.05]
occupation_matrix = fel.occupation_matrix(OW, skip=0, segments=1000)
occupation_matrix = fel.occupation_matrix(OW, skip=0, segments=10)
radius_maxima = 0.05 * 3 ** (1 / 2) + 0.05 / 100
maxima_matrix = fel.find_maxima(
occupation_matrix,
box=box_voxels,
radius=radius_maxima,
pore_geometry="cylindrical"
pore_geometry="cylindrical",
)
maxima_matrix = fel.add_distances(maxima_matrix, "cylindrical", np.diag(box) / 2)
r_bins = np.arange(0, 1, 0.02)
distance_bins = np.arange(0.05, 2.05, 0.1)
r_bins = np.arange(0, 0.5, 0.02)
distance_bins = np.arange(1.8, 1.9, 0.01)
energy_df = fel.distance_resolved_energies(
maxima_matrix, distance_bins, r_bins, box, "cylindrical", 225
)
result = fel.find_energy_maxima(energy_df, r_min=0.05, r_max=0.15)
assert (np.round(np.array(result["energy"])) == np.round(test_array)).all()