Compare commits

...

5 Commits

2 changed files with 35 additions and 48 deletions

View File

@ -4,7 +4,6 @@ from typing import Optional
import numpy as np
from numpy.typing import ArrayLike, NDArray
from numpy.polynomial.polynomial import Polynomial as Poly
import math
from scipy.spatial import KDTree
import pandas as pd
import multiprocessing as mp
@ -47,6 +46,21 @@ def _pbc_points_reduced(
return coordinates_pbc, indices
def _build_tree(points, box, r_max, pore_geometry):
if np.all(np.diag(np.diag(box)) == box):
tree = KDTree(points % box, boxsize=box)
points_pbc_index = None
else:
points_pbc, points_pbc_index = _pbc_points_reduced(
points,
pore_geometry,
box,
thickness=r_max + 0.01,
)
tree = KDTree(points_pbc)
return tree, points_pbc_index
def occupation_matrix(
trajectory: Coordinates,
edge_length: float = 0.05,
@ -64,11 +78,7 @@ def occupation_matrix(
z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
bins = [x_bins, y_bins, z_bins]
# Trajectory is split for parallel computing
size = math.ceil(len(frame_indices) / nodes)
indices = [
np.arange(len(frame_indices))[i : i + size]
for i in range(0, len(frame_indices), size)
]
indices = np.array_split(frame_indices, nodes)
pool = mp.Pool(nodes)
results = pool.map(
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
@ -113,23 +123,14 @@ def find_maxima(
maxima_df = occupation_df.copy()
maxima_df["maxima"] = None
points = np.array(maxima_df[["x", "y", "z"]])
if np.all(np.diag(np.diag(box)) == box):
tree = KDTree(points, boxsize=box)
all_neighbors = tree.query_ball_point(points, radius)
else:
points_pbc, points_pbc_index = _pbc_points_reduced(
points,
pore_geometry,
box,
thickness=radius + 0.01,
)
tree = KDTree(points_pbc)
all_neighbors = tree.query_ball_point(points, radius)
all_neighbors = points_pbc_index[all_neighbors]
tree, points_pbc_index = _build_tree(points, box, radius, pore_geometry)
for i in range(len(maxima_df)):
if maxima_df.loc[i, "maxima"] is not None:
continue
neighbors = np.array(all_neighbors[i])
maxima_pos = maxima_df.loc[i, ["x", "y", "z"]]
neighbors = np.array(tree.query_ball_point(maxima_pos, radius))
if points_pbc_index is not None:
neighbors = points_pbc_index[neighbors]
neighbors = neighbors[neighbors != i]
if len(neighbors) == 0:
maxima_df.loc[i, "maxima"] = True
@ -154,16 +155,7 @@ def _calc_energies(
nodes: int = 8,
) -> NDArray:
points = np.array(maxima_df[["x", "y", "z"]])
if np.all(np.diag(np.diag(box)) == box):
tree = KDTree(points, boxsize=box)
else:
points_pbc, points_pbc_index = _pbc_points_reduced(
points,
pore_geometry,
box,
thickness=bins[-1] + 0.01,
)
tree = KDTree(points_pbc)
tree, points_pbc_index = _build_tree(points, box, bins[-1], pore_geometry)
maxima = maxima_df.loc[maxima_indices, ["x", "y", "z"]]
maxima_occupations = np.array(maxima_df.loc[maxima_indices, "occupation"])
num_of_neighbors = np.max(
@ -187,7 +179,7 @@ def _calc_energies(
all_occupied_bins_hist = []
if distances.ndim == 1:
current_distances = distances[1:][distances[1:] <= bins[-1]]
if np.all(np.diag(np.diag(box)) == box):
if points_pbc_index is None:
current_indices = indices[1:][distances[1:] <= bins[-1]]
else:
current_indices = points_pbc_index[indices[1:][distances[1:] <= bins[-1]]]
@ -201,7 +193,7 @@ def _calc_energies(
return result
for i, maxima_occupation in enumerate(maxima_occupations):
current_distances = distances[i, 1:][distances[i, 1:] <= bins[-1]]
if np.all(np.diag(np.diag(box)) == box):
if points_pbc_index is None:
current_indices = indices[i, 1:][distances[i, 1:] <= bins[-1]]
else:
current_indices = points_pbc_index[
@ -280,7 +272,11 @@ def distance_resolved_energies(
def find_energy_maxima(
energy_df: pd.DataFrame, r_min: float, r_max: float
energy_df: pd.DataFrame,
r_min: float,
r_max: float,
r_eval: float = None,
degree: int = 2,
) -> pd.DataFrame:
distances = []
energies = []
@ -289,6 +285,9 @@ def find_energy_maxima(
x = np.array(data_d["r"])
y = np.array(data_d["energy"])
mask = (x >= r_min) * (x <= r_max)
p3 = Poly.fit(x[mask], y[mask], deg=2)
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
p3 = Poly.fit(x[mask], y[mask], deg=degree)
if r_eval is None:
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
else:
energies.append(p3(r_eval))
return pd.DataFrame({"d": distances, "energy": energies})

View File

@ -13,19 +13,7 @@ def trajectory(request):
def test_get_fel(trajectory):
test_array = np.array(
[
184.4909136,
233.79320471,
223.12003988,
228.49746397,
200.5626769,
212.82484221,
165.10818396,
170.74123681,
175.86672931,
]
)
test_array = np.array([210., 214., 209., 192., 200., 193., 230., 218., 266.])
OW = trajectory.subset(atom_name="OW")
box = trajectory[0].box