Compare commits
8 Commits
31eb145a13
...
fix/tetrah
Author | SHA1 | Date | |
---|---|---|---|
4047db209c | |||
90bd90a608 | |||
67d3e70a66 | |||
c09549902a | |||
b7bb8cb379 | |||
33c4756e34 | |||
7b9f8b6773 | |||
c89cead81c |
@ -73,7 +73,9 @@ def checksum(*args, csum=None):
|
||||
elif isinstance(arg, FunctionType):
|
||||
csum.update(strip_comments(inspect.getsource(arg)).encode())
|
||||
c = inspect.getclosurevars(arg)
|
||||
for v in {**c.nonlocals, **c.globals}.values():
|
||||
merged = {**c.nonlocals, **c.globals}
|
||||
for key in sorted(merged): # deterministic ordering
|
||||
v = merged[key]
|
||||
if v is not arg:
|
||||
checksum(v, csum=csum)
|
||||
elif isinstance(arg, functools.partial):
|
||||
|
@ -182,10 +182,10 @@ def tetrahedral_order(
|
||||
)
|
||||
|
||||
# Connection vectors
|
||||
neighbors_1 -= atoms
|
||||
neighbors_2 -= atoms
|
||||
neighbors_3 -= atoms
|
||||
neighbors_4 -= atoms
|
||||
neighbors_1 = pbc_diff(neighbors_1, atoms, box=atoms.box)
|
||||
neighbors_2 = pbc_diff(neighbors_2, atoms, box=atoms.box)
|
||||
neighbors_3 = pbc_diff(neighbors_3, atoms, box=atoms.box)
|
||||
neighbors_4 = pbc_diff(neighbors_4, atoms, box=atoms.box)
|
||||
|
||||
# Normed Connection vectors
|
||||
neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1)
|
||||
|
@ -4,7 +4,6 @@ from typing import Optional
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.polynomial.polynomial import Polynomial as Poly
|
||||
import math
|
||||
from scipy.spatial import KDTree
|
||||
import pandas as pd
|
||||
import multiprocessing as mp
|
||||
@ -47,6 +46,21 @@ def _pbc_points_reduced(
|
||||
return coordinates_pbc, indices
|
||||
|
||||
|
||||
def _build_tree(points, box, r_max, pore_geometry):
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points % box, boxsize=box)
|
||||
points_pbc_index = None
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=r_max + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
return tree, points_pbc_index
|
||||
|
||||
|
||||
def occupation_matrix(
|
||||
trajectory: Coordinates,
|
||||
edge_length: float = 0.05,
|
||||
@ -64,11 +78,7 @@ def occupation_matrix(
|
||||
z_bins = np.arange(0, box[2][2] + edge_length, edge_length)
|
||||
bins = [x_bins, y_bins, z_bins]
|
||||
# Trajectory is split for parallel computing
|
||||
size = math.ceil(len(frame_indices) / nodes)
|
||||
indices = [
|
||||
np.arange(len(frame_indices))[i : i + size]
|
||||
for i in range(0, len(frame_indices), size)
|
||||
]
|
||||
indices = np.array_split(frame_indices, nodes)
|
||||
pool = mp.Pool(nodes)
|
||||
results = pool.map(
|
||||
partial(_calc_histogram, trajectory=trajectory, bins=bins), indices
|
||||
@ -113,23 +123,14 @@ def find_maxima(
|
||||
maxima_df = occupation_df.copy()
|
||||
maxima_df["maxima"] = None
|
||||
points = np.array(maxima_df[["x", "y", "z"]])
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
all_neighbors = tree.query_ball_point(points, radius)
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=radius + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
all_neighbors = tree.query_ball_point(points, radius)
|
||||
all_neighbors = points_pbc_index[all_neighbors]
|
||||
tree, points_pbc_index = _build_tree(points, box, radius, pore_geometry)
|
||||
for i in range(len(maxima_df)):
|
||||
if maxima_df.loc[i, "maxima"] is not None:
|
||||
continue
|
||||
neighbors = np.array(all_neighbors[i])
|
||||
maxima_pos = maxima_df.loc[i, ["x", "y", "z"]]
|
||||
neighbors = np.array(tree.query_ball_point(maxima_pos, radius))
|
||||
if points_pbc_index is not None:
|
||||
neighbors = points_pbc_index[neighbors]
|
||||
neighbors = neighbors[neighbors != i]
|
||||
if len(neighbors) == 0:
|
||||
maxima_df.loc[i, "maxima"] = True
|
||||
@ -154,16 +155,7 @@ def _calc_energies(
|
||||
nodes: int = 8,
|
||||
) -> NDArray:
|
||||
points = np.array(maxima_df[["x", "y", "z"]])
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
tree = KDTree(points, boxsize=box)
|
||||
else:
|
||||
points_pbc, points_pbc_index = _pbc_points_reduced(
|
||||
points,
|
||||
pore_geometry,
|
||||
box,
|
||||
thickness=bins[-1] + 0.01,
|
||||
)
|
||||
tree = KDTree(points_pbc)
|
||||
tree, points_pbc_index = _build_tree(points, box, bins[-1], pore_geometry)
|
||||
maxima = maxima_df.loc[maxima_indices, ["x", "y", "z"]]
|
||||
maxima_occupations = np.array(maxima_df.loc[maxima_indices, "occupation"])
|
||||
num_of_neighbors = np.max(
|
||||
@ -187,7 +179,7 @@ def _calc_energies(
|
||||
all_occupied_bins_hist = []
|
||||
if distances.ndim == 1:
|
||||
current_distances = distances[1:][distances[1:] <= bins[-1]]
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
if points_pbc_index is None:
|
||||
current_indices = indices[1:][distances[1:] <= bins[-1]]
|
||||
else:
|
||||
current_indices = points_pbc_index[indices[1:][distances[1:] <= bins[-1]]]
|
||||
@ -201,7 +193,7 @@ def _calc_energies(
|
||||
return result
|
||||
for i, maxima_occupation in enumerate(maxima_occupations):
|
||||
current_distances = distances[i, 1:][distances[i, 1:] <= bins[-1]]
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
if points_pbc_index is None:
|
||||
current_indices = indices[i, 1:][distances[i, 1:] <= bins[-1]]
|
||||
else:
|
||||
current_indices = points_pbc_index[
|
||||
@ -280,7 +272,11 @@ def distance_resolved_energies(
|
||||
|
||||
|
||||
def find_energy_maxima(
|
||||
energy_df: pd.DataFrame, r_min: float, r_max: float
|
||||
energy_df: pd.DataFrame,
|
||||
r_min: float,
|
||||
r_max: float,
|
||||
r_eval: float = None,
|
||||
degree: int = 2,
|
||||
) -> pd.DataFrame:
|
||||
distances = []
|
||||
energies = []
|
||||
@ -289,6 +285,9 @@ def find_energy_maxima(
|
||||
x = np.array(data_d["r"])
|
||||
y = np.array(data_d["energy"])
|
||||
mask = (x >= r_min) * (x <= r_max)
|
||||
p3 = Poly.fit(x[mask], y[mask], deg=2)
|
||||
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
|
||||
p3 = Poly.fit(x[mask], y[mask], deg=degree)
|
||||
if r_eval is None:
|
||||
energies.append(np.max(p3(np.linspace(r_min, r_max, 1000))))
|
||||
else:
|
||||
energies.append(p3(r_eval))
|
||||
return pd.DataFrame({"d": distances, "energy": energies})
|
||||
|
@ -13,19 +13,7 @@ def trajectory(request):
|
||||
|
||||
|
||||
def test_get_fel(trajectory):
|
||||
test_array = np.array(
|
||||
[
|
||||
184.4909136,
|
||||
233.79320471,
|
||||
223.12003988,
|
||||
228.49746397,
|
||||
200.5626769,
|
||||
212.82484221,
|
||||
165.10818396,
|
||||
170.74123681,
|
||||
175.86672931,
|
||||
]
|
||||
)
|
||||
test_array = np.array([210., 214., 209., 192., 200., 193., 230., 218., 266.])
|
||||
|
||||
OW = trajectory.subset(atom_name="OW")
|
||||
box = trajectory[0].box
|
||||
|
Reference in New Issue
Block a user