Compare commits
	
		
			23 Commits
		
	
	
		
			b405842452
			...
			fix/nojump
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 9ff3badab1 | ||
|  | 492098fe01 | ||
| 65ac6e9143 | |||
|  | 4047db209c | ||
| 90bd90a608 | |||
|  | 67d3e70a66 | ||
| c09549902a | |||
| b7bb8cb379 | |||
| 33c4756e34 | |||
| 7b9f8b6773 | |||
| c89cead81c | |||
| 31eb145a13 | |||
| af3758cbef | |||
| 93d020a4de | |||
| b5395098ce | |||
| 5e80701562 | |||
| 363e420cd8 | |||
| 6b77ef78e1 | |||
| 0c940115af | |||
| b0f29907df | |||
| 37bf496b21 | |||
| befaef2dfa | |||
| 8ea7da5d2f | 
| @@ -73,7 +73,9 @@ def checksum(*args, csum=None): | ||||
|         elif isinstance(arg, FunctionType): | ||||
|             csum.update(strip_comments(inspect.getsource(arg)).encode()) | ||||
|             c = inspect.getclosurevars(arg) | ||||
|             for v in {**c.nonlocals, **c.globals}.values(): | ||||
|             merged = {**c.nonlocals, **c.globals} | ||||
|             for key in sorted(merged):  # deterministic ordering | ||||
|                 v = merged[key] | ||||
|                 if v is not arg: | ||||
|                     checksum(v, csum=csum) | ||||
|         elif isinstance(arg, functools.partial): | ||||
|   | ||||
| @@ -218,7 +218,7 @@ class Coordinates: | ||||
|             self.get_frame.clear_cache() | ||||
|  | ||||
|     def __iter__(self): | ||||
|         for i in range(len(self))[self._slice]: | ||||
|         for i in range(len(self.frames))[self._slice]: | ||||
|             yield self[i] | ||||
|  | ||||
|     @singledispatchmethod | ||||
| @@ -232,7 +232,7 @@ class Coordinates: | ||||
|         return sliced | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.frames) | ||||
|         return len(self.frames[self._slice]) | ||||
|  | ||||
|     def __checksum__(self): | ||||
|         return checksum(self.frames, self.atom_filter, self._slice, self.mode) | ||||
| @@ -692,10 +692,6 @@ def number_of_neighbors( | ||||
|     elif not distinct: | ||||
|         dnn = 1 | ||||
|  | ||||
|     print(atoms[:5]) | ||||
|     print(query_atoms[:5]) | ||||
|     print(" ") | ||||
|  | ||||
|     box = atoms.box | ||||
|     if np.all(np.diag(np.diag(box)) == box): | ||||
|         atoms = atoms % np.diag(box) | ||||
|   | ||||
| @@ -278,11 +278,11 @@ def van_hove_self( | ||||
|     if axis == "all": | ||||
|         delta_r = (vectors**2).sum(axis=1) ** 0.5 | ||||
|     elif axis == "xy" or axis == "yx": | ||||
|         return (vectors[:, [0, 1]]**2).sum(axis=1) ** 0.5 | ||||
|         delta_r = (vectors[:, [0, 1]]**2).sum(axis=1) ** 0.5 | ||||
|     elif axis == "xz" or axis == "zx": | ||||
|         return (vectors[:, [0, 2]]**2).sum(axis=1) ** 0.5 | ||||
|         delta_r = (vectors[:, [0, 2]]**2).sum(axis=1) ** 0.5 | ||||
|     elif axis == "yz" or axis == "zy": | ||||
|         return (vectors[:, [1, 2]]**2).sum(axis=1) ** 0.5 | ||||
|         delta_r = (vectors[:, [1, 2]]**2).sum(axis=1) ** 0.5 | ||||
|     elif axis == "x": | ||||
|         delta_r = np.abs(vectors[:, 0]) | ||||
|     elif axis == "y": | ||||
|   | ||||
| @@ -182,10 +182,10 @@ def tetrahedral_order( | ||||
|     ) | ||||
|  | ||||
|     # Connection vectors | ||||
|     neighbors_1 -= atoms | ||||
|     neighbors_2 -= atoms | ||||
|     neighbors_3 -= atoms | ||||
|     neighbors_4 -= atoms | ||||
|     neighbors_1 = pbc_diff(neighbors_1, atoms, box=atoms.box) | ||||
|     neighbors_2 = pbc_diff(neighbors_2, atoms, box=atoms.box) | ||||
|     neighbors_3 = pbc_diff(neighbors_3, atoms, box=atoms.box) | ||||
|     neighbors_4 = pbc_diff(neighbors_4, atoms, box=atoms.box) | ||||
|  | ||||
|     # Normed Connection vectors | ||||
|     neighbors_1 /= np.linalg.norm(neighbors_1, axis=-1).reshape(-1, 1) | ||||
|   | ||||
| @@ -11,7 +11,7 @@ from mdevaluate.coordinates import CoordinateFrame, Coordinates | ||||
| from mdevaluate.pbc import pbc_points | ||||
|  | ||||
|  | ||||
| def a_ij(atoms: ArrayLike, N: int = 4, l: int = 3) -> tuple[NDArray, NDArray]: | ||||
| def calc_aij(atoms: ArrayLike, N: int = 4, l: int = 3) -> tuple[NDArray, NDArray]: | ||||
|     tree = KDTree(atoms) | ||||
|  | ||||
|     dist, indices = tree.query(atoms, N + 1) | ||||
| @@ -84,18 +84,18 @@ def count_ice_types(iceTypes: NDArray) -> NDArray: | ||||
|  | ||||
|  | ||||
| def selector_ice( | ||||
|     start_frame: CoordinateFrame, | ||||
|     traj: Coordinates, | ||||
|     oxygen_atoms_water: CoordinateFrame, | ||||
|     chosen_ice_types: ArrayLike, | ||||
|     combined: bool = True, | ||||
|     next_neighbor_distance: float = 0.35, | ||||
| ) -> NDArray: | ||||
|     oxygen = traj.subset(atom_name="OW") | ||||
|     atoms = oxygen[start_frame.step] | ||||
|     atoms = atoms % np.diag(atoms.box) | ||||
|     atoms_PBC = pbc_points(atoms, thickness=1) | ||||
|     aij, indices = a_ij(atoms_PBC) | ||||
|     atoms = oxygen_atoms_water | ||||
|     atoms_PBC = pbc_points(atoms, thickness=next_neighbor_distance * 2.2) | ||||
|     aij, indices = calc_aij(atoms_PBC) | ||||
|     tree = KDTree(atoms_PBC) | ||||
|     neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True) | ||||
|     neighbors = tree.query_ball_point( | ||||
|         atoms_PBC, next_neighbor_distance, return_length=True | ||||
|     ) - 1 | ||||
|     index_SOL = atoms_PBC.tolist().index(atoms[0].tolist()) | ||||
|     index_SOL = np.arange(index_SOL, index_SOL + len(atoms)) | ||||
|     ice_Types = classify_ice(aij, indices, neighbors, index_SOL) | ||||
| @@ -117,9 +117,9 @@ def selector_ice( | ||||
| def ice_types(trajectory: Coordinates, segments: int = 10000) -> pd.DataFrame: | ||||
|     def ice_types_distribution(frame: CoordinateFrame, selector: Callable) -> NDArray: | ||||
|         atoms_PBC = pbc_points(frame, thickness=1) | ||||
|         aij, indices = a_ij(atoms_PBC) | ||||
|         aij, indices = calc_aij(atoms_PBC) | ||||
|         tree = KDTree(atoms_PBC) | ||||
|         neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True) | ||||
|         neighbors = tree.query_ball_point(atoms_PBC, 0.35, return_length=True) - 1 | ||||
|         index = selector(frame, atoms_PBC) | ||||
|         ice_types_data = classify_ice(aij, indices, neighbors, index) | ||||
|         ice_parts_data = count_ice_types(ice_types_data) | ||||
| @@ -161,8 +161,8 @@ def ice_types(trajectory: Coordinates, segments: int = 10000) -> pd.DataFrame: | ||||
| def ice_clusters_traj( | ||||
|     traj: Coordinates, segments: int = 10000, skip: float = 0.1 | ||||
| ) -> list: | ||||
|     def ice_clusters(frame: CoordinateFrame, traj: Coordinates) -> Tuple[float, list]: | ||||
|         selection = selector_ice(frame, traj, [0, 1, 2]) | ||||
|     def ice_clusters(frame: CoordinateFrame) -> Tuple[float, list]: | ||||
|         selection = selector_ice(frame, [0, 1, 2]) | ||||
|         if len(selection) == 0: | ||||
|             return frame.time, [] | ||||
|         else: | ||||
| @@ -194,6 +194,6 @@ def ice_clusters_traj( | ||||
|         np.int_(np.linspace(len(traj) * skip, len(traj) - 1, num=segments)) | ||||
|     ) | ||||
|     all_clusters = [ | ||||
|         ice_clusters(traj[frame_index], traj) for frame_index in frame_indices | ||||
|         ice_clusters(traj[frame_index]) for frame_index in frame_indices | ||||
|     ] | ||||
|     return all_clusters | ||||
|   | ||||
| @@ -1,9 +1,9 @@ | ||||
| from functools import partial | ||||
| from typing import Optional | ||||
|  | ||||
| import numpy as np | ||||
| from numpy.typing import ArrayLike, NDArray | ||||
| from numpy.polynomial.polynomial import Polynomial as Poly | ||||
| import math | ||||
| from scipy.spatial import KDTree | ||||
| import pandas as pd | ||||
| import multiprocessing as mp | ||||
| @@ -11,6 +11,56 @@ import multiprocessing as mp | ||||
| from ..coordinates import Coordinates | ||||
|  | ||||
|  | ||||
| def _pbc_points_reduced( | ||||
|     coordinates: ArrayLike, | ||||
|     pore_geometry: str, | ||||
|     box: Optional[NDArray] = None, | ||||
|     thickness: Optional[float] = None, | ||||
| ) -> tuple[NDArray, NDArray]: | ||||
|     if box is None: | ||||
|         box = coordinates.box | ||||
|     if pore_geometry == "cylindrical": | ||||
|         grid = np.array([[i, j, k] for k in [-1, 0, 1] for j in [0] for i in [0]]) | ||||
|         indices = np.tile(np.arange(len(coordinates)), 3) | ||||
|     elif pore_geometry == "slit": | ||||
|         grid = np.array( | ||||
|             [[i, j, k] for k in [0] for j in [1, 0, -1] for i in [-1, 0, 1]] | ||||
|         ) | ||||
|         indices = np.tile(np.arange(len(coordinates)), 9) | ||||
|     else: | ||||
|         raise ValueError( | ||||
|             f"pore_geometry is {pore_geometry}, should either be " | ||||
|             f"'cylindrical' or 'slit'" | ||||
|         ) | ||||
|     coordinates_pbc = np.concatenate([coordinates + v @ box for v in grid], axis=0) | ||||
|     size = np.diag(box) | ||||
|  | ||||
|     if thickness is not None: | ||||
|         mask = np.all(coordinates_pbc > -thickness, axis=1) | ||||
|         coordinates_pbc = coordinates_pbc[mask] | ||||
|         indices = indices[mask] | ||||
|         mask = np.all(coordinates_pbc < size + thickness, axis=1) | ||||
|         coordinates_pbc = coordinates_pbc[mask] | ||||
|         indices = indices[mask] | ||||
|  | ||||
|     return coordinates_pbc, indices | ||||
|  | ||||
|  | ||||
| def _build_tree(points, box, r_max, pore_geometry): | ||||
|     if np.all(np.diag(np.diag(box)) == box): | ||||
|         tree = KDTree(points % box, boxsize=box) | ||||
|         points_pbc_index = None | ||||
|     else: | ||||
|         points_pbc, points_pbc_index = _pbc_points_reduced( | ||||
|             points, | ||||
|             pore_geometry, | ||||
|             box, | ||||
|             thickness=r_max + 0.01, | ||||
|         ) | ||||
|         tree = KDTree(points_pbc) | ||||
|     return tree, points_pbc_index | ||||
|  | ||||
|  | ||||
| def occupation_matrix( | ||||
|     trajectory: Coordinates, | ||||
|     edge_length: float = 0.05, | ||||
| @@ -28,11 +78,7 @@ def occupation_matrix( | ||||
|     z_bins = np.arange(0, box[2][2] + edge_length, edge_length) | ||||
|     bins = [x_bins, y_bins, z_bins] | ||||
|     # Trajectory is split for parallel computing | ||||
|     size = math.ceil(len(frame_indices) / nodes) | ||||
|     indices = [ | ||||
|         np.arange(len(frame_indices))[i : i + size] | ||||
|         for i in range(0, len(frame_indices), size) | ||||
|     ] | ||||
|     indices = np.array_split(frame_indices, nodes) | ||||
|     pool = mp.Pool(nodes) | ||||
|     results = pool.map( | ||||
|         partial(_calc_histogram, trajectory=trajectory, bins=bins), indices | ||||
| @@ -72,19 +118,19 @@ def _calc_histogram( | ||||
|  | ||||
|  | ||||
| def find_maxima( | ||||
|     occupation_df: pd.DataFrame, box: ArrayLike, edge_length: float = 0.05 | ||||
|     occupation_df: pd.DataFrame, box: ArrayLike, radius: float, pore_geometry: str | ||||
| ) -> pd.DataFrame: | ||||
|     maxima_df = occupation_df.copy() | ||||
|     maxima_df["maxima"] = None | ||||
|     points = np.array(maxima_df[["x", "y", "z"]]) | ||||
|     tree = KDTree(points, boxsize=box) | ||||
|     all_neighbors = tree.query_ball_point( | ||||
|         points, edge_length * 3 ** (1 / 2) + edge_length / 100 | ||||
|     ) | ||||
|     tree, points_pbc_index = _build_tree(points, box, radius, pore_geometry) | ||||
|     for i in range(len(maxima_df)): | ||||
|         if maxima_df.loc[i, "maxima"] is not None: | ||||
|             continue | ||||
|         neighbors = np.array(all_neighbors[i]) | ||||
|         maxima_pos = maxima_df.loc[i, ["x", "y", "z"]] | ||||
|         neighbors = np.array(tree.query_ball_point(maxima_pos, radius)) | ||||
|         if points_pbc_index is not None: | ||||
|             neighbors = points_pbc_index[neighbors] | ||||
|         neighbors = neighbors[neighbors != i] | ||||
|         if len(neighbors) == 0: | ||||
|             maxima_df.loc[i, "maxima"] = True | ||||
| @@ -104,23 +150,39 @@ def _calc_energies( | ||||
|     maxima_df: pd.DataFrame, | ||||
|     bins: ArrayLike, | ||||
|     box: NDArray, | ||||
|     pore_geometry: str, | ||||
|     T: float, | ||||
|     nodes: int = 8, | ||||
| ) -> NDArray: | ||||
|     points = np.array(maxima_df[["x", "y", "z"]]) | ||||
|     tree = KDTree(points, boxsize=box) | ||||
|     tree, points_pbc_index = _build_tree(points, box, bins[-1], pore_geometry) | ||||
|     maxima = maxima_df.loc[maxima_indices, ["x", "y", "z"]] | ||||
|     maxima_occupations = np.array(maxima_df.loc[maxima_indices, "occupation"]) | ||||
|     num_of_neighbors = np.max( | ||||
|         tree.query_ball_point(maxima, bins[-1], return_length=True) | ||||
|     ) | ||||
|     distances, indices = tree.query( | ||||
|         maxima, k=num_of_neighbors, distance_upper_bound=bins[-1] | ||||
|     ) | ||||
|     split_maxima = [] | ||||
|     for i in range(0, len(maxima), 1000): | ||||
|         split_maxima.append(maxima[i : i + 1000]) | ||||
|  | ||||
|     distances = [] | ||||
|     indices = [] | ||||
|     for maxima in split_maxima: | ||||
|         distances_step, indices_step = tree.query( | ||||
|             maxima, k=num_of_neighbors, distance_upper_bound=bins[-1], workers=nodes | ||||
|         ) | ||||
|         distances.append(distances_step) | ||||
|         indices.append(indices_step) | ||||
|     distances = np.concatenate(distances) | ||||
|     indices = np.concatenate(indices) | ||||
|     all_energy_hist = [] | ||||
|     all_occupied_bins_hist = [] | ||||
|     if distances.ndim == 1: | ||||
|         current_distances = distances[1:][distances[1:] <= bins[-1]] | ||||
|         current_indices = indices[1:][distances[1:] <= bins[-1]] | ||||
|         if points_pbc_index is None: | ||||
|             current_indices = indices[1:][distances[1:] <= bins[-1]] | ||||
|         else: | ||||
|             current_indices = points_pbc_index[indices[1:][distances[1:] <= bins[-1]]] | ||||
|         energy = ( | ||||
|             -np.log(maxima_df.loc[current_indices, "occupation"] / maxima_occupations) | ||||
|             * T | ||||
| @@ -131,8 +193,12 @@ def _calc_energies( | ||||
|         return result | ||||
|     for i, maxima_occupation in enumerate(maxima_occupations): | ||||
|         current_distances = distances[i, 1:][distances[i, 1:] <= bins[-1]] | ||||
|         current_indices = indices[i, 1:][distances[i, 1:] <= bins[-1]] | ||||
|  | ||||
|         if points_pbc_index is None: | ||||
|             current_indices = indices[i, 1:][distances[i, 1:] <= bins[-1]] | ||||
|         else: | ||||
|             current_indices = points_pbc_index[ | ||||
|                 indices[i, 1:][distances[i, 1:] <= bins[-1]] | ||||
|             ] | ||||
|         energy = ( | ||||
|             -np.log(maxima_df.loc[current_indices, "occupation"] / maxima_occupation) | ||||
|             * T | ||||
| @@ -168,9 +234,12 @@ def distance_resolved_energies( | ||||
|     distance_bins: ArrayLike, | ||||
|     r_bins: ArrayLike, | ||||
|     box: NDArray, | ||||
|     pore_geometry: str, | ||||
|     temperature: float, | ||||
|     nodes: int = 8, | ||||
| ) -> pd.DataFrame: | ||||
|     results = [] | ||||
|     distances = [] | ||||
|     for i in range(len(distance_bins) - 1): | ||||
|         maxima_indices = np.array( | ||||
|             maxima_df.index[ | ||||
| @@ -179,11 +248,22 @@ def distance_resolved_energies( | ||||
|                 * (maxima_df["maxima"] == True) | ||||
|             ] | ||||
|         ) | ||||
|         results.append( | ||||
|             _calc_energies(maxima_indices, maxima_df, r_bins, box, temperature) | ||||
|         ) | ||||
|         try: | ||||
|             results.append( | ||||
|                 _calc_energies( | ||||
|                     maxima_indices, | ||||
|                     maxima_df, | ||||
|                     r_bins, | ||||
|                     box, | ||||
|                     pore_geometry, | ||||
|                     temperature, | ||||
|                     nodes, | ||||
|                 ) | ||||
|             ) | ||||
|             distances.append((distance_bins[i] + distance_bins[i + 1]) / 2) | ||||
|         except ValueError: | ||||
|             pass | ||||
|  | ||||
|     distances = (distance_bins[:-1] + distance_bins[1:]) / 2 | ||||
|     radii = (r_bins[:-1] + r_bins[1:]) / 2 | ||||
|     d = np.array([d for d in distances for r in radii]) | ||||
|     r = np.array([r for d in distances for r in radii]) | ||||
| @@ -192,7 +272,11 @@ def distance_resolved_energies( | ||||
|  | ||||
|  | ||||
| def find_energy_maxima( | ||||
|     energy_df: pd.DataFrame, r_min: float, r_max: float | ||||
|     energy_df: pd.DataFrame, | ||||
|     r_min: float, | ||||
|     r_max: float, | ||||
|     r_eval: float = None, | ||||
|     degree: int = 2, | ||||
| ) -> pd.DataFrame: | ||||
|     distances = [] | ||||
|     energies = [] | ||||
| @@ -201,6 +285,9 @@ def find_energy_maxima( | ||||
|         x = np.array(data_d["r"]) | ||||
|         y = np.array(data_d["energy"]) | ||||
|         mask = (x >= r_min) * (x <= r_max) | ||||
|         p3 = Poly.fit(x[mask], y[mask], deg=2) | ||||
|         energies.append(np.max(p3(np.linspace(r_min, r_max, 1000)))) | ||||
|         p3 = Poly.fit(x[mask], y[mask], deg=degree) | ||||
|         if r_eval is None: | ||||
|             energies.append(np.max(p3(np.linspace(r_min, r_max, 1000)))) | ||||
|         else: | ||||
|             energies.append(p3(r_eval)) | ||||
|     return pd.DataFrame({"d": distances, "energy": energies}) | ||||
|   | ||||
| @@ -265,7 +265,7 @@ def LSI( | ||||
|     ) | ||||
|     distributions = np.array( | ||||
|         [ | ||||
|             LSI_distribution(trajectory[frame_index], trajectory, bins, selector=None) | ||||
|             LSI_distribution(trajectory[frame_index], bins, selector=None) | ||||
|             for frame_index in frame_indices | ||||
|         ] | ||||
|     ) | ||||
|   | ||||
| @@ -149,32 +149,21 @@ def nojump(frame: CoordinateFrame, usecache: bool = True) -> CoordinateFrame: | ||||
|             i0 = 0 | ||||
|             delta = 0 | ||||
|  | ||||
|         delta = ( | ||||
|             delta | ||||
|             + np.array( | ||||
|                 np.vstack( | ||||
|                     [m[i0 : abstep + 1].sum(axis=0) for m in reader.nojump_matrices] | ||||
|                 ).T | ||||
|             ) | ||||
|             @ frame.box | ||||
|         ) | ||||
|         delta = (delta | ||||
|             + np.vstack( | ||||
|                 [m[i0 : abstep + 1].sum(axis=0) for m in reader.nojump_matrices] | ||||
|             ).T) | ||||
|  | ||||
|         reader._nojump_cache[abstep] = delta | ||||
|         while len(reader._nojump_cache) > NOJUMP_CACHESIZE: | ||||
|             reader._nojump_cache.popitem(last=False) | ||||
|         delta = delta[selection, :] | ||||
|     else: | ||||
|         delta = ( | ||||
|             np.array( | ||||
|                 np.vstack( | ||||
|                     [ | ||||
|                         m[: frame.step + 1, selection].sum(axis=0) | ||||
|                         for m in reader.nojump_matrices | ||||
|                     ] | ||||
|         delta = np.vstack( | ||||
|                 [m[: frame.step + 1, selection].sum(axis=0) for m in reader.nojump_matrices] | ||||
|                 ).T | ||||
|             ) | ||||
|             @ frame.box | ||||
|         ) | ||||
|      | ||||
|     delta = delta[selection, :] | ||||
|     delta = np.array(delta @ frame.box) | ||||
|     return frame - delta | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -152,7 +152,7 @@ def nojump_load_filename(reader: BaseReader): | ||||
|         ) | ||||
|         if os.path.exists(full_path_fallback): | ||||
|             return full_path_fallback | ||||
|     if os.path.exists(fname) or is_writeable(directory): | ||||
|     if os.path.exists(full_path) or is_writeable(directory): | ||||
|         return full_path | ||||
|     else: | ||||
|         user_data_dir = os.path.join("/data/", os.environ["HOME"].split("/")[-1]) | ||||
|   | ||||
| @@ -13,42 +13,24 @@ def trajectory(request): | ||||
|  | ||||
|  | ||||
| def test_get_fel(trajectory): | ||||
|     test_array = np.array( | ||||
|         [ | ||||
|             174.46253634, | ||||
|             174.60905476, | ||||
|             178.57658092, | ||||
|             182.43001192, | ||||
|             180.57916378, | ||||
|             176.49886217, | ||||
|             178.96018547, | ||||
|             181.13561782, | ||||
|             178.31026314, | ||||
|             176.08903996, | ||||
|             180.71215345, | ||||
|             181.59703135, | ||||
|             180.34329368, | ||||
|             187.02474488, | ||||
|             197.99167477, | ||||
|             214.05788031, | ||||
|             245.58571282, | ||||
|             287.52457507, | ||||
|             331.53492965, | ||||
|         ] | ||||
|     ) | ||||
|     test_array = np.array([210., 214., 209., 192., 200., 193., 230., 218., 266.]) | ||||
|  | ||||
|     OW = trajectory.subset(atom_name="OW") | ||||
|  | ||||
|     box = np.diag(trajectory[0].box) | ||||
|     box_voxels = (box // [0.05, 0.05, 0.05] + [1, 1, 1]) * [0.05, 0.05, 0.05] | ||||
|     occupation_matrix = fel.occupation_matrix(OW, skip=0, segments=1000) | ||||
|     maxima_matrix = fel.find_maxima(occupation_matrix, box=box_voxels, edge_length=0.05) | ||||
|     maxima_matrix = fel.add_distances(maxima_matrix, "cylindrical", box / 2) | ||||
|     r_bins = np.arange(0, 2, 0.02) | ||||
|     distance_bins = np.arange(0.05, 2.05, 0.1) | ||||
|     box = trajectory[0].box | ||||
|     box_voxels = (np.diag(box) // [0.05, 0.05, 0.05] + [1, 1, 1]) * [0.05, 0.05, 0.05] | ||||
|     occupation_matrix = fel.occupation_matrix(OW, skip=0, segments=10) | ||||
|     radius_maxima = 0.05 * 3 ** (1 / 2) + 0.05 / 100 | ||||
|     maxima_matrix = fel.find_maxima( | ||||
|         occupation_matrix, | ||||
|         box=box_voxels, | ||||
|         radius=radius_maxima, | ||||
|         pore_geometry="cylindrical", | ||||
|     ) | ||||
|     maxima_matrix = fel.add_distances(maxima_matrix, "cylindrical", np.diag(box) / 2) | ||||
|     r_bins = np.arange(0, 0.5, 0.02) | ||||
|     distance_bins = np.arange(1.8, 1.9, 0.01) | ||||
|     energy_df = fel.distance_resolved_energies( | ||||
|         maxima_matrix, distance_bins, r_bins, box, 225 | ||||
|         maxima_matrix, distance_bins, r_bins, box, "cylindrical", 225 | ||||
|     ) | ||||
|     result = fel.find_energy_maxima(energy_df, r_min=0.05, r_max=0.15) | ||||
|  | ||||
|     assert (np.round(np.array(result["energy"])) == np.round(test_array)).all() | ||||
|   | ||||
		Reference in New Issue
	
	Block a user